Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 5. Опоры шпиндельных узлов. Системы смазки

В шпиндельных узлах современных станков в основном применяются подшипники качения. Для них характерны небольшие потери на трение и простые системы смазывания. Подшипники качения обеспечивают высокую точность вращения шпинделей (радиальное биение 0,01...0,03 мм, в прецизионных станках - несколько микрометров) и необходимую виброустойчивость, они надежно работают при изменении частоты вращения и нагрузок в широких диапазонах, удобны в эксплуатации.

Быстроходность подшипников качения характеризуется предельной частотой вращения и параметром быстроходности. Предельная частота вращения подшипников в нормальных условиях эксплуатации указывается в каталогах подшипников. Если частота вращения шпинделя должна превышать предельную для подшипников, следует обеспечить хороший отвод теплоты от опор, использовать смазочные материалы малой вязкости.

Обобщенным показателем быстроходности опор подшипника является параметр быстроходности

, ,

где - диаметр отверстия шпинделя (мм);

- наибольшая частота вращения шпинделя (об/мин).

 

Обобщённый параметр быстроходности также может определяться, как

, ,

где - диаметр наибольшей детали (мм).

 

Двухрядные роликовые подшипники с короткими цилиндрическими роликами (табл. 6) предназначены для восприятия только радиальных нагрузок. Подшипники типа 3182100 имеют гладкую дорожку качения (без буртов) на наружном кольце, типа 4162900 - на внутреннем кольце. Последнее позволило уменьшить наружный диаметр подшипника. Благодаря наличию конического отверстия во внутреннем кольце при его осевом перемещении относительно конической шейки шпинделя регулируется радиальный зазор в подшипнике. Описываемые подшипники применяются в шпиндельных узлах, предназначенных для работы при больших радиальных нагрузках и средних частотах вращения. Их параметр быстроходности , диапазон регулирования частоты вращения не превышает 500.

Конические роликоподшипники применяются в опорах, работающих с относительно небольшими частотами вращения и воспринимающих значительные комбинированные нагрузки. Для повышения жесткости передней опоры подшипники устанавливают по О-образной схеме. Из-за больших нагрузок на трение их параметр быстроходности обычно не превышает , допустимый диапазон регулирования частоты вращения равен 100.

Однорядные роликовые конические подшипники с буртом на наружном кольце типа 67700Л (табл. 7) предназначены для восприятия радиальных и осевых нагрузок. От обычных роликовых подшипников отличаются следующим. Имеют малый угол конуса дорожек качения, благодаря чему снижается давление роликов на борт внутреннего кольца и повышается радиальная жёсткость. На внутреннем кольце отсутствует малый борт, что дает возможность обрабатывать дорожку качения с повышенной точностью. Массивный сепаратор из цветного металла центрируется по внутреннему кольцу. Параметр быстроходности . Эти подшипники обычно устанавливают в передней опоре шпинделя.

Однорядные роликовые конические подшипники с широким наружным кольцом типа 17000 (табл. 8) предназначены для установки в задней опоре шпинделя. Пружины, вставленные в отверстия наружного кольца, обеспечивают постоянный предварительный натяг подшипника. Благодаря большой ширине наружного кольца снижается его перекос в корпусе.

Двухрядные роликовые конические подшипники с буртом на наружном кольце типа 697000 (табл. 9) воспринимают радиальную и осевую нагрузку. Благодаря ужесточенным требованиям к волнистости гранности рабочих поверхностей и тому, что в переднем ряду на один ролик больше, чем в заднем, снижается уровень вибраций шпинделя и улучшается стабильность положения его оси. С помощью промежуточного кольца в подшипнике создается заданный натяг или зазор, благодаря чему отпадает необходимость в регулировании или подгонке деталей при монтаже шпиндельного узла. Бурт на наружном кольце позволяет использовать при сборке удобную базу - торец шпиндельной бабки и сделать шпиндельную опору более компактной. Параметр быстроходности .

Радиально-упорные шарикоподшипники применяют при малой или средней нагрузке на шпиндель и высокой частоте вращения (например, для внутришлифовальных шпинделей). Радиально-упорные шариковые высокоскоростные подшипники имеют углы контакта 12, 15, 20 или 25° и отличаются высокой точностью изготовления. Подшипники поставляют в одиночном исполнении (табл. 10-13) или комплектами, состоящими из двух, трех или четырех подшипников. Радиально-упорные шариковые подшипники универсального исполнения серий 36000КУ и 46000КУ различаются способом центрирования сепаратора (по наружному кольцу, по внутреннему кольцу), в шпиндельных опорах могут быть установлены по два - по схемам дуплекс О-образная (рис. 1, а), дуплекс Х-образная (рис. 1, б), дуплекс-тандем (рис. 1, в) или по три - по схеме триплекс-тандем О-образная (рис. 1, г). Опоры шпинделей работают с легким, средним или тяжелым предварительным натягом. Ориентировочные значения натяга приведены в табл. 14. Натяг обеспечивается при изготовлении комплекта подшипников. Способ установки подшипников и предварительный натяг оказывают влияние на их работоспособность (табл. 15).

Рисунок 1 - Компоновки опор шпинделя из радиально-упорных подшипников

 

Упорно-радиальные сдвоенные шариковые подшипники с углом контакта 60° предназначены для восприятия только осевой нагрузки. В состав подшипника типа 178800Л (табл. 16) входят два тугих внутренних кольца, свободное наружное кольцо, проставочное кольцо, тела качения, два массивных сепаратора. Ширина проставочного кольца обуславливает величину предварительного натяга, благодаря которому отпадает необходимость в регулировании натяга в процессе монтажа шпиндельного узла, повышается стабильность натяга и долговечность подшипника.

Упорно-радиальные шариковые подшипники выпускаются в двух исполнениях, различающихся диаметром отверстия внутреннего кольца. При размещении такого подшипника в опоре со стороны малого или большого диаметра конической посадочной шейки, предназначенной для роликоподшипников с короткими цилиндрическими роликами, применяют упорно-радиальные подшипники соответственно серий 178800 или 178900. Параметр быстроходности . Быстроходность подшипников данного типа приблизительно в 2-2,5 раза выше быстроходности обычных упорных подшипников. Диапазон регулирования частоты вращения достигает 1000.

Упорно-радиальный сдвоенный шариковый подшипник устанавливают в опору вместе с роликоподшипником, воспринимающим только радиальную нагрузку. Точные, жесткие, быстроходные шпиндельные опоры такой конструкции применяются в токарных, фрезерных, расточных и других станках.

Упорные шарикоподшипники воспринимают только осевую нагрузку. Для повышения стабильности предварительного натяга, сохранения его у обоих подшипников при больших нагрузках, уменьшения вероятности повреждения дорожек качения в результате центробежного и гироскопического эффектов подшипники часто устанавливаются вместе с пружинами. Роликовые подшипники с управляемым натягом типа 117000 (табл. 17) предназначены для шпиндельных узлов, работающих в широком интервале частот вращения при повышенном требовании к жесткости шпиндельного узла. В таких подшипниках обеспечивается независимость натяга от внешних воздействий. Между внутренним 1 и наружным 3 кольцами находится кольцо 8 с уплотнениями 5 и 7. В замкнутую полость А через отверстие 6 подводят масло. Давление его автоматически изменяется в соответствии с нагрузкой на шпиндель, зависящей от сил резания. Увеличение давления масла сопровождается смещением кольца 4 влево, возрастанием силы, с которой оно действует на ролики 2 и, следовательно, увеличением натяга в подшипниках.

 


 

 

 


 


 

 

 

 


 

 

 

 

 

 

 

 

 

 


 


 

СПОСОБЫ СМАЗЫВАНИЯ ПОДШИПНИКОВ КАЧЕНИЯ

 

Жидкие смазочные масла отводят теплоту от шпиндельных опор, унося из подшипников продукты изнашивания. При выборе вязкости масла учитывают частоту вращения шпинделя, температуру шпиндельного узла и ее влияние на вязкость масла.

Систему смазывания жидким материалом назначают, исходя из требуемой быстроходности шпинделя (табл. 18), с учетом его положения (горизонтальное, вертикальное или наклонное), условий подвода масла, типа уплотнений. В зависимости от способности отводить теплоту от подшипников качения системы смазывания делят на два типа: с отводом теплоты - система обильного смазывания, без отвода теплоты - система минимального смазывания

Обильное смазывание обеспечивается циркуляционной системой, впрыскиванием, поливом струей масла. Циркуляционное смазывание осуществляется автономной системой, предназначенной только для шпиндельного узла, или системой, общей для него и привода главного движения. Масло подается в шпиндельную опору или карман, из которого стекает в него. Для улучшения циркуляции масла предусматривают отверстия в пружинном кольце подшипника, в роликах. Чтобы обеспечить надежное попадание смазочного материала на рабочие поверхности подшипников, масло подводят в зону всасывания, т.е. к малому диаметру дорожек качения радиально-упорных, шариковых и роликовых подшипников, которым присущ насосный эффект. Если два подшипника установлены рядом, целесообразно вводить масло между ними. В вертикальном положении шпинделя масло подводят к самому верхнему подшипнику. Предусматривают свободный слив масла из опоры, благодаря чему не допускают его застоя и снижают температуру опоры. В резервуаре или с помощью специального холодильника масло охлаждается. С повышением частоты вращения шпинделя разница между количеством выделяющейся теплоты и отводимой от подшипникового узла увеличивается, а при высокой частоте вращения через подшипники невозможно прокачать нужный объем масла. Например, двухрядные роликоподшипники создают большое гидравлическое сопротивление, и перемешивание слишком большого объема масла приводит не к снижению, а к повышению температуры опоры.

Минимально-допустимый расход жидкого смазочного материала (см3/мин) для смазывания шпиндельных опор можно определить по зависимости

,

где - средний диаметр подшипников, мм;

- число рядов тел качения в подшипнике;

- вязкость масла при рабочей температуре опоры, м2/с;

- коэффициент, характеризующий тип подшипника (для шарикоподшипников =1, для роликоподшипников =2);

- коэффициент, характеризующий условия нагружения (при легком нагружении без предварительного натяга =1, при тяжелом нагружении с предварительным натягом =2);

- коэффициент, характеризующий условия выхода масла из рабочей зоны подшипника (при свободном выходе из конических, упорных и упорно-радиальных подшипников =2, при свободном выходе радиальных подшипников =1);

- коэффициент, зависящий от рабочей температуры подшипника.

Прокачивание через шпиндельную опору нескольких тысяч кубических сантиметров масла в минуту не только позволяет надежное смазывание, но и обеспечивает отвод теплоты от опоры, т.е. создает режим "охлаждающего" смазывания. Расход масла при таком смазывании зависит от типа подшипника, частоты его вращения и вязкости масла. Для конических роликоподшипни- ков Q = (5...10)d. Для радиально-упорных подшипников при d > 120 мм Q >2500 см3/мин. Для упорно-радиальных подшипников при d = 80...180 мм Q = 500...5000 см3/мин, при d > 180 мм Q = 2000...10000 см3/мин.

Смазывание впрыскиванием осуществляется специальной системой. Через 3-4 отверстия в кольце подшипника или через каналы в проставочном кольце и зазор между сепаратором и внутренним кольцом подшипника масло под давлением до 0,4 МПа попадает на его рабочие поверхности. При этом температура подшипника снижается. Масло из опоры может удаляться самотеком или с помощью насоса. Необходимый расход через опору при номинальном диаметре отверстия подшипника до 50 мм, 50...120 мм и более 120 мм должен составлять соответственно 500...1500, 1100...4200 и более 2500 см3/мин.

Системы минимального смазывания можно подразделить на капельную и фитильную системы и смазывание масляным туманом, которые обеспечивают во внутренней полости опоры необходимый минимальный объем смазочного материала, достаточный только для разделения рабочих поверхностей опоры эластогидродинамической пленкой.

Капельная система обеспечивает подачу в подшипник небольшого объема масла (от 0,02 до 2 см3/мин). Фитильная система также служит для подачи в шпиндельную опору небольшого объема масла. Оно поступает из резервуара по фитилю. Из-за невозможности точного регулирования расхода масло может накапливаться в опоре.

Смазывание масляным туманом, образующимся с помощью маслораспылителя, приводит к выделению в опорах минимального количества теплоты. Они хорошо охлаждаются сжатым воздухом и благодаря его избыточному давлению защищены от пыли. Однако система сложна, и проникающие наружу через уплотнения частицы масла ухудшают санитарное условие у станка.

Требуемый расход смазочного материала (см3/мин)

где Q0 - минимальный допустимый расход масла при благоприятных условиях (для шарикоподшипников Q0 = 0,02 см3/мин, для цилиндрических роликоподшипников Q0 = 0,04 см3/мин);

k1 - коэффициент, зависящий от частоты вращения и размера подшипника (при nd 1,5 <105 k1 =1, при nd 1,5 = 105...106 k1 =2, при nd 1,5 >106 k1 =4);

k2 - коэффициент запаса смазочного материала в корпусе опоры (при достаточном запасе, обеспечиваемом смазочной ванной, k2 =1, при незначительном запасе k2 =2, при отсутствии запаса, когда масло свободно стекает из опоры, k2 =4);

k3 - коэффициент, зависящий от допускаемой температуры опоры t (при t = 70 °С k3 =1, при t = 70...100 °С k3 =2, при t = 100...130 °С k3 =4).

Масловоздушное смазывание осуществляется следующим образом. Плунжерный дозатор, установленный в точке смазывания, через определенные интервалы времени выдает в смеситель заданный объем масла. Там оно захватывается охлажденным воздухом, имеющим давление 0,2...0,4 МПа, и в виде капель (а не микротумана) подводится к смазывающим поверхностям. Объем подводимого к шпиндельной опоре масла определяется расходом воздуха и не зависит от его давления и расхода масла. В отличие от смазывания масляным туманом рассматриваемый метод позволяет повысить подачу масла в каждой точке с целью защиты опор от загрязнений и их дополнительного охлаждения. Масловоздушное смазывание не загрязняет окружающую среду микротуманом и рекомендуется для быстроходных шпиндельных узлов. Пластичные смазочные материалы применяют в тех случаях, когда специальное охлаждение опор не требуется, например, при смазывании радиально-упорных шарикоподшипников с углом контакта 12...18° при , других опор при . Пластичный смазочный материал особенно целесообразно применять в автономных шпиндельных узлах, не имеющих зубчатых передач, которые обычно смазываются жидким маслом, а также в шпиндельных узлах, расположенных вертикально или наклонно, при этом их уплотнения становятся более простыми.

При проектировании шпиндельных узлов с подшипниками, смазываемыми пластичным материалом, следует определить минимально необходимый для опоры объем материала, сделать прогноз его срока службы, предусмотреть надежные уплотнения узла как со стороны коробки скоростей, так и с наружной стороны. Излишний смазочный материал в опоре вызывает повышенный нагрев, поэтому объем материала в опоре не должен превышать требуемого минимума. Объем масла, которое должно быть заложено в опору (см3)

,

где - средний диаметр подшипников, мм;

- ширина подшипника, мм (для упорных и упорно-радиальных подшипников вместо B в зависимость подставляют высоту подшипника);

- коэффициент, равный 0,01; 0,015; 0,02; 0,03; 0,04 для подшипников, имеющих диаметр отверстия 40...100 мм, 100...130, 130...160, 160...200, 200 и более миллиметров.

Периодически в опоры необходимо вводить дополнительные объемы масла (см3)

,

где и - наружный диаметр и ширина подшипника, мм;

- коэффициент, зависящий от периодичности пополнения подшипника смазочным материалом: при ежедневном пополнении = 0,0012...0,0015; при еженедельном = 0,0015...0,002; при пополнении раз в месяц = 0,002...0,003; при пополнении раз в год = 0,003...0,0045.

<== предыдущая лекция | следующая лекция ==>
Другий вид ризиків - це ризики, пов'язані з альтернативним вибором співвідношення різних видів фінансування інвестицій | Введение. Для выполнения курсовых работ по
Поделиться с друзьями:


Дата добавления: 2014-11-18; Просмотров: 3962; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.049 сек.