Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

В биосфере




Углерод-кислородного массообмена

Роль почвы в регулировании

Средняя концентрация рассеянных элементов в торфе лесной зоны европейской территории России, мкг/г сухого вещества

(поданным В.Н.Крештаповой, 1991)

 

Химический элемент Тип торфа
верховой переходный низинный
М, мг/кг V, % М V М, мг/кг V, %
Ti 117,9   210,6   283,8  
V з,о   6,8   10,8  
Сг 3,7   4,9   7,8  
Мпn 22,1   43,3   124,8  
Со 0,7   0,9   1,3  
Ni 4,0   4,6   7,0  
Сu 3,6 8,5 4,7   7,5  
Zn 18,4   8,5   11,1  
Ga 1,2   2,7   3,1  
Ge 0,4   0,2   0,6  
Zr 4,2   11,5   17,9  
Mo 0,3   1,1   1,6  
Рb 3,6   4,5   2,3  
Ag 0,1   0,2   0,2  
Y 0,7   2,4   2,2  
Sc 0,1   0,3   0,3  
Sr 19,6   47,5   55,4  
                   

 

Примечание. М — среднее содержание, мг/кг; V — коэффициент вариации, %.

 

Средние значения концентраций тяжелых металлов в органическом веществе педосферы, составляют мкг/г сухого вещества:

 

Fe................................................ 200-300

Мп.................................................. 30

Zn................................................... 25

Сг.................................................... 4

Ni.................................................... 4

V..................................................... 3

Сu................................................... 3

РЬ................................................... 2

Со................................................... 1

Мо............................................... 0,5

Cd................................................ 0,3

Hg................................................ 0,1

 

Почва характеризуется высокой биогенностью и насыщенностью живыми организмами, их метаболитами, а также мертвым рганическим веществом, преимущественно растительного происхождения.

Деструкция растительных остатков производится почвенной ме-зофауной — многочисленными беспозвоночными, обильно населяющими верхние горизонты почвы, богатые органическим веществом. Количество беспозвоночных в хорошо увлажняемых ландшафтах меняется от 9 до 60 — 70 т/км2 сырой массы, а в некоторых случаях достигает 200 т/км2 (Чернов Ю. И., 1975). Наибольшая часть массы почвенных беспозвоночных приходится на дождевых червей (до 40 — 50 т/км2) и членистоногих (до 10 — 30 т/км2). О размахе их деятельности свидетельствуют данные о том, что дождевые черви на 1 км2 лиственного леса могут переработать за сезон всю массу опавших листьев и перемешать продукты деструкции с минеральной массой, в 10 раз большей (Глазовская М.А., 1988).

Ответственная роль в глобальной биогеохимии педосферы принадлежит микроорганизмам: бактериям, актиномицетам, грибам, водорослям, простейшим. Огромное количество и видовое разнообразие свидетельствуют, что почва является самой благоприятной средой их обитания. Масса микроорганизмов в поверхностном горизонте почв в несколько раз превышает массу наземных животных и достигает 2 — 3 т/га. Суммарная живая масса микроорганизмов во всей педосфере, возможно, близка к 10n×109т; сухая биомасса почвенных микроорганизмов согласно данным X. Боуэна равна 7×109 т.

Одной из главных групп почвенных микроорганизмов являются бактерии. Их количество колеблется от (0,5 — 0,8)×106 экземпляров в 1 г вещества подзолов до (2 — 2,5)×106 экземпляров в 1 г черноземов, что соответствует примерно 2 и 6 т живой массы на площади в 1 га. По мнению Г. А. Заварзина (1984), в общей массе почвенных бактерий связано 6×109 т углерода, что соответствует примерно 12×109 т сухого органического вещества. Бактерии состоят преимущественно из белков, в подчиненном количестве присутствуют липиды. Среднее содержание главных элементов в бактериях, по данным X. Боуэна (1966), можно представить в следующем виде (в процентах сухого органического вещества):

 

С..........................................................54,0

О..........................................................23,0

N.......................................................... 9,6

Н.......................................................... 7,4

Mg........................................................0,70

Са........................................................0,51

Na........................................................0,46

Р...........................................................3,00

S...........................................................0,53

 

В биогеохимических процессах, обусловленных жизнедеятельностью почвенных бактерий, участвуют огромные массы химических элементов. Автотрофные бактерии-нитрификаторы в рельтате биохимического окисления недоступного для высших ра-тений аммиака на протяжении года образуют сотни килограммов на гектар доступных для растений нитратов. Азотофиксирую-иие бактерии, обладающие способностью поглощать и связывать молекулярный азот из атмосферы, аккумулируют в педосфере от 44×106 (Дейбьюри К., 1970) до 200×106 т/год азота (Россвэлл Т., 1983).

Особо важное значение имеет деятельность гетеротрофных бактерий, участвующих в трансформации органического вещества вплоть до конечного продукта его биохимического окисления — углекислого газа. Не менее ответственная роль принадлежит актиномицетам и грибам, которые разрушают наиболее устойчивые компоненты растительных остатков — клетчатку и лигнин. Содержание актиномицетов весьма велико и часто измеряется миллиардами экземпляров в 1 г почвы. Таким образом, основная масса углекислого газа, образующаяся на суше, есть результат жизнедеятельности микроорганизмов, насыщающих педосферу.

Выше отмечалось, что благодаря особенностям микроморфологии почва обладает высокой пористостью. Суммарный объем пор и пустот в верхнем горизонте почвы составляет 55 — 70 % и более от общего объема почвы. По этой причине в объеме газов между педосферой и приземным слоем тропосферы принимают участие весьма значительные массы. Оценить их можно лишь очень приблизительно. Площадь Мировой суши, за исключением внутри-континентальных водоемов (2×106км2) и ледников (13,9×106 км2), составляет 134×106 км2. Среднее значение порозности верхнего слоя педосферы мощностью 0,5 м можно принять равной 50 %. Следовательно, суммарный объем пор и пустот равен 33,5×106 км3. Если учесть, что в теплое время года полная смена почвенного воздуха происходит несколько раз в сутки, то, очевидно, что на протяжении года в движение на разделе поверхность почвы — атмосфера вовлекаются многие миллиарды кубических километров газов.

Почва не только служит резервуаром природных газов, но также является, по выражению Г. А. Заварзина, «идеальным приспособлением» для трансформации их состава. Огромная поверхность в единице объема почвы, обилие органических остатков, постоянное присутствие капиллярной влаги и наличие кислорода в газовой фазе — все это способствует активной микробиологической деятельности. При этом очень важное значение имеет агрегирован-ность почвенного вещества. Устойчивое присутствие капиллярной воды внутри агрегатов при наличии свободных от воды межагрегатных пор и трещин создает условия для сосуществования различных групп микроорганизмов. В межагрегатном пространстве благодаря свободному диффузионному газообмену с приземным слоем воздуха активно развивается жизнедеятельность аэробных микроорганизмов. Иная ситуация существует внутри агрегатов, где капиллярные поры заполнены водой и поэтому диффузия происходит в сотни раз медленнее. Такие условия способствуют развитию анаэробных бактерий. Аэробные и анаэробные микроорганизмы находятся в тесном трофическом взаимодействии. Анаэробные микроорганизмы являются продуцентами газов из разлагающихся растительных остатков. Специфически аэробные бактерии, окисляющие водород, метан, разнообразные соединения серы, не выпускают эти газы из почвы в атмосферу. Таким образом, в почве происходит почти замкнутый круговорот перечисленных выше газов, а в атмосферу выходит преимущественно СО2.

Благодаря активной жизнедеятельности микроорганизмов состав почвенного воздуха и атмосферы сильно различается. В почвенном воздухе в десятки и сотни раз больше углекислого газа, но меньше, чем в атмосфере кислорода. Содержание молекулярного азота примерно одинаковое. Почвенный воздух сильно обогащен парами воды, насыщенность которыми близка к 100%, а также разнообразными летучими органическими и неорганическими биогенными соединениями.

Почвенная микрофлора играет весьма важную роль в регулировании выделения из почвы газов, находящихся в атмосфере в очень небольшом количестве, в том числе газов, поступающих из глубинных слоев земной коры. Среди глубинных газовых эманации постоянно присутствуют углеводороды, образующиеся в процессе метаморфизации осадочных пород, содержащих рассеянное органическое вещество. Постоянный поток рассеянных углеводородов перехватывается аэробными бактериями, которые окисляют эти газы. Бактерии распространены в почвах повсеместно в количестве п× (103—105) экземпляров в 1 г почвы (Заварзин Г. А., 1984). Жизнедеятельность аэробных бактерий обеспечивает отсутствие в приземном воздухе таких углеводородов, как пропан и гептан, активно диффундирующих из залежей нефти и газа. Возрастание в почвенном воздухе углеводородов сопровождается увеличением численности бактерий, окисляющих углеводороды. Этот факт используется в качестве признака для поиска газонефтяных месторождений (так называемый микробиологический метод поиска).

Таким образом, в педосфере действует своеобразный биогеохимический фильтр — бактериальная система, защищающая атмосферу от поступления рассеянных углеводородов.

В связи с газорегулирующей ролью педосферы отметим недостаточно изученный, но весьма важный биогеохимический процесс. Многие ученые предполагают, что процесс метилизации металлов (прежде всего ртути) обусловлен деятельностью бактерий. В то же время одна из морфологических групп бактерий — гифобактерии — способна использовать различные метилированные соединения. Г. А. Заварзин (1984) высказал мысль о наличии в почве микробиологического механизма, замыкающего метилированные оединения во внутрипочвенный круговорот и таким образом пре-храняющего атмосферу от поступления метилированных соединений. Можно предположить, что благодаря этому механизму с поверхности педосферы выделяется меньше летучих метилированных металлов, чем с поверхности Мирового океана.

Газообмен почвы и приземного слоя тропосферы осуществляется благодаря диффузии и конвекции. Избыточное увлажнение, тем более насыщение почвы водой, подавляет продуцирование диоксида углерода микроорганизмами. Одновременно усиливаются анаэробные микробиологические процессы, сопровождающиеся образованием метана, сероводорода, метилированной ртути.

В автоморфных почвах, существующих в условиях хорошей аэрации, аэробная микрофлора доминирует над анаэробной, содержание кислорода в почвенном воздухе слабо уменьшается вниз по почвенному профилю и соответственно содержание углекислого газа увеличивается слабо, примерно в 2 раза. По мере затруднения аэрации при заполнении пор водой в гидроморфных почвах активизируются анаэробные микробиологические процессы. При неполном водонасыщении происходит сильное уменьшение содержания кислорода в почвенном воздухе вниз по профилю почвы и увеличение углекислого газа в несколько раз. Принципиальная разница в распределении О2 и СО2 в автоморфных и гидроморфных почвах в период наибольшей биологической активности (июнь) показана в табл. 5.5.

Таблица 5.5




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 482; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.