КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Распределение масс углерода в земной коре
(по данным А. Б.Ронова и А.А.Ярошевского, 1976, с добавлениями автора)
* Включая эффузивы. ** За исключением эффузивов.
Главным резервуаром углерода служит осадочная толща земной коры (стратисфера). Концентрация Ск и Сорг в осадочной оболочке на порядок выше, чем в гранитном и базальтовом слоях земной коры. Несмотря на то что объем осадочной оболочки составляет всего 1/10 часть земной коры, в осадочной толще сосредоточено 75 % массы Ск и 75 % массы Сорг. Основная масса Сорг представлена рассеянным органическим веществом. Концентрированные скопления Сорг в виде залежей нефти и каменных углей имеют подчиненное значение. По данным Д.М.Ханта (1965), в месторождениях нефти находится 0,2 • 1012 т, каменного угля — 6×1012 т углерода. В сумме это на три порядка ниже массы углерода рассеянного органического вещества, содержащегося в осадочной оболочке. Общая картина распределения масс углерода в биосфере выглядит следующим образом: Резервуар Масса, 109 m Атмосфера, СО2......................................................................... 700 Мировая суша: биомасса растительности до воздействия человека............. 1150 биомасса растительности (в настоящее время)...................... 900 Педосфера:............................................................................... 2500 в том числе высокоустойчивые формы гумуса в рыхлых континентальных отложениях плейстоценового возраста................................................... 300 Океан: биомасса фотосинтетиков................................................... 1,7 биомасса консументов......................................................... 2,3 органическое вещество (растворенное и взвешенное)..... 2100 растворенные гидрокарбонат-ионы................................... 38500 Земная кора: осадочная оболочка: Сорг.................................................................................15000000 Ск..................................................................................81 000000 гранитный слой континентального блока: Сорг................................................................................. 4000000 Ск...................................................................................18000000
Закономерности распределения углерода в земной коре показывают, что существуют две главные группы форм нахождения углерода: карбонатные и органические соединения. Следует подчеркнуть, что и те и другие биогенны. Карбонаты небиогенного происхождения — довольно редкое исключение из общего правила (например, вулканические карбонатиты). Связующим звеном между карбонатами и органическими соединениями служит СО2, который является необходимым исходным материалом как для фотосинтеза органического вещества, так и для образования карбонатов организмами. В процессе жизнедеятельности организмов происходит определенное фракционирование изотопного состава углерода СО2. Этот процесс был предсказан В.И.Вернадским (1926) задолго до получения первых экспериментальных данных. Масса земного углерода состоит из двух стабильных изотопов 12С и 13С и исчезающе малых количеств 14С (радиоактивный с периодом полураспада 5730 лет). Соотношение 12С: 13С варьирует в разных природных объектах от 88 до 94. В живом веществе оно составляет около 90,5, в углекислом газе атмосферы и гидросферы — 89,5, в карбонатных отложениях — примерно 88,6. Более точной характеристикой изотопного состава углерода служит относительный прирост 13С: Стандартом служит эталон PDB: углерод карбоната кальция Belemnitella americana позднемелового возраста из формации PD со значением 13С: 12С= 1123,72×10-5. Значение d13С со знаком плюс соответствует относительному увеличению содержания изотопа 13С, со знаком минус — его уменьшению в исследуемом образце по сравнению со стандартом. При действии главного звена фотосинтеза — фермента рибу-лозобисфосфаткарбоксилазы — происходит более быстрое поглощение легкого изотопа 12С и вследствие этого обогащение им углерода органического вещества. Особенно активно это происходит под влиянием микробиологических процессов. По этой причине метан микробиологического происхождения максимально обогащен легким изотопом. Так как фотосинтезируемое органическое вещество захватывает 12С, карбонаты обогащены тяжелым изотопом 13С. Согласно М. Шидловскому (1980) в обобщенном виде можно считать, что углерод СО2, выделяемый из мантии при дегазации, имеет d13С = -5 %о, углерод органического вещества d13С = -25 ± 5 %, углерод осадочных карбонатов d3С = 0,0 ± 2,5 %о. М. Шидловский рассчитал соотношение изотопов углерода в осадочной оболочке и обнаружил, что оно соответствует соотношению масс Ск и Сорг. Таким образом, изучение изотопного состава углерода в осадочных породах разного возраста, во-первых, свидетельствует о том, что ассимиляция СО2 при фотосинтезе происходила однотипно на протяжении по крайней мере 3,7 млрд лет. Следовательно, этот процесс, осуществляющийся универсальным для всех продуцентов ферментом рибулозобисфосфаткарбоксилазой, воспроизводился всеми поколениями фотосинтетиков с момента их появления. Во-вторых, результаты изучения изотопного состава и распределения масс Ск и Сорг хорошо согласуются. На протяжении длительного отрезка времени происходило закономерное распределение исходного СО2 между процессами фотосинтеза и карбонатообразования. При этом более 80 % углерода, поступавшего в атмосферу при дегазации мантии, связывалось в карбонатах. Карбонатообразование и фотосинтез следует рассматривать как два генеральных процесса в глобальной деятельности живого вещества на протяжении последних 3 — 3,5 млрд лет. Соотношение масс Ск и Сорг является весьма важным показателем, который характеризует «лимит роста» живого вещества на разных этапах геологической истории. Соотношение масс карбонатного и органического углерода закономерно уменьшалось на протяжении последних 1,6 млрд лет. Как следует из данных А. Б. Ронова (1976), в толще осадков верхнего протерозоя (1600 — 570 млн лет) отношение Ск: Сорг равно 18, в осадочной толще палеозоя (570 — 400 млн лет) — 11, в осадках мезозоя (235 — 66 млн лет) — 5,2, кайнозоя — 2,9. Неуклонное возрастание относительного содержания органического вещества во взвесях, выносимых реками с древней суши, свидетельствует о прогрессирующем увеличении продуктивности наземных фотосинтезирующих организмов и постепенном усилении роли растительности Мировой суши в глобальной фиксации углерода СО2. Карбонатообразование и фотосинтез органического вещества имеют общую направленность на удаление из атмосферы углекислого газа, непрерывно поступающего из мантии. Возможно, что эти процессы являются частью глобального механизма поддержания невысокой концентрации СО2 в газовой оболочке Земли, что имеет весьма важное значение в связи с так называемым «парниковым эффектом». Обратимся к рассмотрению природных процессов динамики массообмена углерода в биосфере. Современный глобальный биогеохимический цикл углерода состоит из двух крупных циклов более низкого ранга. Первый из них обусловлен связыванием углекислого газа в органическое вещество путем фотосинтеза и новым образованием СО2 в процессе трансформации первичного органического вещества организмами-гетеротрофами и почвенными микроорганизмами. Если бы этот цикл был полностью замкнутым, то количество поглощенного при фотосинтезе углекислого газа должно полностью возвращаться в исходный резервуар — атмосферу. В действительности этого не происходит. Продуктивность растительности Мировой суши до ее нарушения человеком составляла 172,5×109 т/год сухого органического вещества, содержащего 46% углерода, т.е. около 80- 109 т/год. В настоящее время продуктивность природной растительности, по-видимому, сократилась до 60×109 т углерода. Продукцию фотосинтеза в океане определяют от 40×109 (Болин Б., 1979) до (50 — 60) ×109 т/год Сорг (Романкевич А. Е., 1988). Количество ежегодно разрушающегося органического вещества пока не поддается точному определению. Тем не менее можно утверждать, что из рассматриваемого цикла постоянно выводится значительное количество углерода в составе почвенного гумуса. Учитывая данные О.Н.Бирюковой и Д.С.Орлова (2000), можно считать, что на образование фульвокислот, гуминовых кислот и гумина расходуется 2 — 3 % всего количества углерода, содержащегося в ежегодно отмирающих продуктах фотосинтеза на суше, т.е. около 1,5×109 т/год. Такое количество ежегодно выводится из глобального кругооборота углерода в настоящее время; до нарушения растительного покрова человеком эта величина была больше — вероятно около 2×109 т/год. Масса углерода, связывающегося в наиболее устойчивых (гуминовых) компонентах почвенного гумуса, вероятно, в 2 — 3 раза меньше, порядка 0,5×109 т/год. Таким образом, на протяжении тысячелетия за счет образования устойчивых гумусовых веществ в педосфере связывается масса углерода, соизмеримая с массой этого элемента в атмосфере. Синтез и разрушение органического вещества в океане существенно отличаются от того, как протекают эти процессы на суше. Преобладающую часть фотосинтезированного органического вещества обеспечивает фитопланктон. Его сухая масса почти на три порядка меньше массы растительности Мировой суши, но годовая продукция имеет близкие значения. Это объясняется значительно более быстрыми жизненными циклами главных фотосинтетиков океана — планктонных организмов — по сравнению с наземными растениями. Из соотношения биомассы растительности суши (2500×109 т) и ее продукции (172,5×109 т/год сухого органического вещества) следует, что полная замена массы растительности Мировой суши происходит за период около 15 лет. В океане ситуация иная. Несмотря на то, что оценка биомассы и продуктивности фитопланктона разных авторов расходится в 10 раз, можно считать, что оборот массы фитопланктона происходит за 1 — 2 сут, а обновление всей биомассы океана примерно за 1 мес. По расчетам разных авторов, продукция фотосинтеза в океане составляет от 20×109 до 100×109 т/год Сорг и более, в среднем около (50 — 60)×109 т/год. В силу того что синтезированное планктоном органическое вещество практически полностью захватывается и разлагается последующими трофическими циклами, в осадок уходит не более 0,1×109 т/год, что соответствует около 0,05×109 т/год углерода. Таким образом, на протяжении года живое вещество суши и океана поглощает около 440×109 т СО2 или 120×109 т Сорг, большая часть которого вновь возвращается в океан и атмосферу. Второй крупный биогеохимический цикл углерода связан с взаимодействием СО2 атмосферы и природных вод. Между газами тропосферы и поверхностным слоем океана существует подвижное равновесие. Растворимость газов в воде зависит от давления, температуры, а также от количества растворенных солей. Увеличение растворимости происходит по мере роста парциального давления согласно зависимости Дальтона — Генри. В пресной воде газов растворяется больше, чем в соленой, но количество пресной воды на поверхности Земли неизмеримо меньше, чем соленой. Поэтому в глобальном балансе СО2 пресные воды играют скромную роль. Растворимость СО2 уменьшается с возрастанием температуры следующим образом:
Температура, °С.......................0 10 20 25 Растворимость, мл/л.............1,71 1,19 0,80 0,76
Среднее содержание углекислого газа, растворенного в морской воде, принято равным 0,75 мл/л (Лисицин А. П., 1983). Но углекислый газ в отличие от других газов вступает в химическое взаимодействие с водой. При этом образуется угольная кислота: СО2 + Н2О ⇄ Н2СО3. Эта кислота двухосновная и диссоциирует ступенчато, образуя карбонат-гидрокарбонатную систему: С учетом всех компонентов системы можно считать, что в 1 л океанической воды содержится в растворенном состоянии до 50 см3 СО2. В результате химического взаимодействия СО2 и Н2О в Мировом океане содержится огромное количество угольной кислоты. Масса гидрокарбонат-иона в Мировом океане — 196×1012 т, в пересчете на СО2 — 141×10'2 т. Это количество почти в 60 раз превышает массу углекислого газа, находящегося в атмосфере. Таким образом, океан является основным резервуаром СО2 на поверхности Земли. Благодаря процессу растворения — выделения углекислого газа с поверхности океана и карбонат-гидрокарбонатной системе происходит массообмен СО2 между атмосферой и океаном. Движение масс СО2 схематично можно представить следующим образом. Углекислый газ активно растворяется в холодной воде приполярных районов океана. При охлаждении возрастает плотность воды. Массы холодной воды опускаются на глубину и в виде мощных холодных течений перемещаются к экватору. Они постепенно нагреваются, уменьшают плотность, поднимаются и освобождаются от избытка СО2. По выражению А.П.Виноградова (1967), океан действует как грандиозный насос, забирая СО2 из атмосферы в холодных областях и отдавая ее в тропических областях. На массообмен СО2 между поверхностным слоем океана и тропосферой весьма активно влияют планктон, освещенность, се-зонно-термические условия. Американский геохимик Б.Болин (1979) на основании определения скорости уменьшения содержания радиоактивного изотопа |4С после крупных испытаний ядерного оружия в атмосфере в 1963 г. пришел к заключению, что в цикл растворения — выделения СО2 с поверхности Мирового океана вовлекается примерно 100×109 т/год СО2 или около 30×109 т/год. Определенный вклад в массообмен углерода между атмосферой и океаном вносит захват гидрокарбонатов ветром с брызгами волн и возвращение их в океан с атмосферными осадками. Концентрация [НСО3]- в атмосферных осадках над океаном составляет 0,33 мг/л (Безбородов А. А. и др., 1984). С атмосферными осадками выпадает 0,136×109 т/год [НСО3]-. В этой массе содержится 0,027×109 т Ск. При этом на сушу ежегодно переносится с воздушными массами океанического происхождения около 0,015×109 т [НСО3]-, в том числе 0,003×109 т С. Средняя концентрация [НСО3Г в атмосферных осадках над Мировой сушей около 10 мг/л. В круговороте воды над сушей участвует 6,9×109 т [НСО3]_, т.е. 0,14×109 т С. Дотация за счет переноса гидрокарбонатов воздушными массами с океана существенного значения не имеет. Сложную проблему представляет оценка масс Ск и Сорг, ежегодно выбывающих из биогеохимических циклов в океане. Полная карбонат-гидрокарбонатная система включает образование карбоната кальция:
Процесс связывания углерода в составе карбонатов так же, как связывание его в составе органического вещества, обусловлен жизнедеятельностью организмов, но осуществляется иным биохимическим механизмом. Образование карбонатных отложений в значительной мере обусловлено поступлением ионов Са2+ с речным стоком. Вынос ионов Са2+ составляет нескольким более 0,53×109 т/год. Это количество может обеспечить вывод в осадок 1,33×109 т/год СаСО3, что соответствует выведению из карбонат-гидрокарбонатной системы 0,57×109 т СО2 или 0,16×109 т С. Количество выносимого магния (135 • 106 т/год) дополнительно может связать 68×106 т/год Ск. Общее количество углерода, ежегодно связываемого в составе карбонатов, составляет около 0,2×109 т. Согласно соотношению масс карбонатного углерода и углерода органического вещества, осаждение карбонатов 1,5 млрд лет назад сильно преобладало над захоронением органического вещества (отношение масс Ск: Сорг = 18). С течением времени относительное содержание масс Сорг возрастало. В толще морских отложений кайнозойского возраста отношение Ск: Сорг уменьшилось до 2,5 и даже до 1,4. Если такое соотношение сохраняется в настоящее время, то масса углерода органического вещества, поступающего в осадки пелагиали Мирового океана, может быть равна 0,06 - 0,11, в среднем 0,08×109 т/год. Из данных А. Б. Ронова (1976) следует, что в неогене скорость выведения углерода в морские осадки колебалась от 0,020×109 до 0,085×109 т/год Ск и от 0,014×109 до 0,020×109 т/год Сорг. Эти цифры хорошо согласуются с вышеприведенной оценкой. Важную роль в глобальном массообмене углерода играет водный сток с Мировой суши. Поступление [НСО3]- с водным стоком с континентов составляет 2,4- 109 т/год, т.е. 0,47- 109 т/год углерода (табл. 7.2). Кроме того, в речной воде содержится растворенное органическое вещество. Средняя концентрация этого углерода равна 6,9 мг/л (Ливингстон Д., 1963), а годовой вынос — 0,28 • 109 т/год. Средняя концентрация углерода взвешенных частиц нерастворимого органического вещества в речном стоке равна 5 мг/л, вынос — около 0,2×109 т/год. Преобладающая часть этой массы не достигает открытого океана и уходит в осадки на шельфе, в дельтах и эстуариях рек. Можно предполагать, что ежегодно с поверхности Мировой суши выносится 0,5×109 т/год Ск и близкое количество Сорг. Таблица 7.2
Дата добавления: 2014-11-20; Просмотров: 600; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |