Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сеть с топологией кольцо




 

В отличие от ограниченного конвейерного функционирования векторного процессора, матричный процессор (синоним для большинства SIMD-машин) может быть значительно более гибким. Обрабатывающие элементы таких процессоров - это универсальные программируемые ЭВМ, так что задача, решаемая параллельно, может быть достаточно сложной и содержать ветвления. Обычное проявление этой вычислительной модели в исходной программе примерно такое же, как и в случае векторных операций: циклы на элементах массива, в которых значения, вырабатываемые на одной итерации цикла, не используются на другой итерации цикла.

Модели вычислений на векторных и матричных ЭВМ настолько схожи, что эти ЭВМ часто обсуждаются как эквивалентные.

3) Машины типа MIMD.

MIMD компьютер имеет N процессоров, независимо исполняющих N потоков команд и обрабатывающих N потоков данных. Каждый процессор функционирует под управлением собственного потока команд, то есть MIMD компьютер может параллельно выполнять совершенно разные программы.

 

 

MIMD архитектуры далее классифицируются в зависимости от физической организации памяти, то есть имеет ли процессор свою собственную локальную память и обращается к другим блокам памяти, используя коммутирующую сеть, или коммутирующая сеть подсоединяет все процессоры к общедоступной памяти. Исходя из организации памяти, различают следующие типы параллельных архитектур:

• Компьютеры с распределенной памятью (Distributed memory)

Процессор может обращаться к локальной памяти, может посылать и получать сообщения, передаваемые по сети, соединяющей процессоры. Сообщения используются для осуществления связи между процессорами или, что эквивалентно, для чтения и записи удаленных блоков памяти. В идеализированной сети стоимость посылки сообщения между двумя узлами сети не зависит как от расположения обоих узлов, так и от трафика сети, но зависит от длины сообщения.

 

 

• Компьютеры с общей (разделяемой) памятью (True shared memory)

Все процессоры совместно обращаются к общей памяти, обычно, через шину или иерархию шин. В идеализированной PRAM (Parallel Random Access Machine - параллельная машина с произвольным доступом) модели, часто используемой в теоретических исследованиях параллельных алгоритмов, любой процессор может обращаться к любой ячейке памяти за одно и то же время. На практике масштабируемость этой архитектуры обычно приводит к некоторой форме иерархии памяти. Частота обращений к общей памяти может быть уменьшена за счет сохранения копий часто используемых данных в кэш-памяти, связанной с каждым процессором. Доступ к этому кэш-памяти намного быстрее, чем непосредственно доступ к общей памяти.

• Компьютеры с виртуальной общей (разделяемой) памятью (Virtual shared memory)

Общая память как таковая отсутствует. Каждый процессор имеет собственную локальную память и может обращаться к локальной памяти других процессоров, используя "глобальный адрес". Если "глобальный адрес" указывает не на локальную память, то доступ к памяти реализуется с помощью сообщений, пересылаемых по коммуникационной сети.

MIMD архитектуры с распределенной памятью можно так же классифицировать по пропускной способности коммутирующей сети. Например, в архитектуре, в которой пары из процессора и модуля памяти (процессорный элемент) соединены сетью с топологий решетка, каждый процессор имеет одно и то же число подключений к сети вне зависимости от числа процессоров компьютера. Общая пропускная способность такой сети растет линейно относительно числа процессоров. В топологии клика каждый процессор должен быть соединен со всеми другими процессорами. С другой стороны в архитектуре, имеющей сеть с топологий гиперкуб, число соединений процессора с сетью является логарифмической функцией от числа процессоров, а пропускная способность сети растет быстрее, чем линейно по отношению к числу процессоров.

 

Сеть с топологией 2D решетка(тор)

 

Сеть с топологией 2D гиперкуб (тор)

.

Термин "мультипроцессор" покрывает большинство машин типа MIMD и (подобно тому, как термин "матричный процессор" применяется к машинам типа SIMD) часто используется в качестве синонима для машин типа MIMD. В мультипроцессорной системе каждый процессорный элемент (ПЭ) выполняет свою программу достаточно независимо от других процессорных элементов. Процессорные элементы, конечно, должны как-то связываться друг с другом, что делает необходимым более подробную классификацию машин типа MIMD. В мультипроцессорах с общей памятью (сильносвязанных мультипроцессорах) имеется память данных и команд, доступная всем ПЭ. С общей памятью ПЭ связываются с помощью общей шины или сети обмена. В противоположность этому варианту в слабосвязанных многопроцессорных системах (машинах с локальной памятью) вся память делится между процессорными элементами и каждый блок памяти доступен только связанному с ним процессору. Сеть обмена связывает процессорные элементы друг с другом.

Базовой моделью вычислений на MIMD-мультипроцессоре является совокупность независимых процессов, эпизодически обращающихся к разделяемым данным. Существует большое количество вариантов этой модели. На одном конце спектра - модель распределенных вычислений, в которой программа делится на довольно большое число параллельных задач, состоящих из множества подпрограмм. На другом конце спектра - модель потоковых вычислений, в которых каждая операция в программе может рассматриваться как отдельный процесс. Такая операция ждет своих входных данных (операндов), которые должны быть переданы ей другими процессами. По их получении операция выполняется, и полученное значение передается тем процессам, которые в нем нуждаются. В потоковых моделях вычислений с большим и средним уровнем гранулярности, процессы содержат большое число операций и выполняются в потоковой манере.

4) Многопроцессорные машины с SIMD-процессорами.

Многие современные супер-ЭВМ представляют собой многопроцессорные системы, в которых в качестве процессоров используются векторные процессоры или процессоры типа SIMD. Такие машины относятся к машинам класса MSIMD.

Языки программирования и соответствующие компиляторы для машин типа MSIMD обычно обеспечивают языковые конструкции, которые позволяют программисту описывать "крупнозернистый" параллелизм. В пределах каждой задачи компилятор автоматически векторизует подходящие циклы. Машины типа MSIMD, как можно себе представить, дают возможность использовать лучший из этих двух принципов декомпозиции: векторные операции ("мелкозернистый" параллелизм) для тех частей программы, которые подходят для этого, и гибкие возможности MIMD-архитектуры для других частей программы.

Многопроцессорные системы за годы развития вычислительной техники претерпели ряд этапов своего развития. Исторически первой стала осваиваться технология SIMD. Однако в настоящее время наметился устойчивый интерес к архитектурам MIMD. Этот интерес главным образом определяется двумя факторами:

1.Архитектура MIMD дает большую гибкость: при наличии адекватной поддержки со стороны аппаратных средств и программного обеспечения MIMD может работать как однопользовательская система, обеспечивая высокопроизводительную обработку данных для одной прикладной задачи, как многопрограммная машина, выполняющая множество задач параллельно, и как некоторая комбинация этих возможностей.

2.Архитектура MIMD может использовать все преимущества современной микропроцессорной технологии на основе строгого учета соотношения стоимость/производительность. В действительности практически все современные многопроцессорные системы строятся на тех же микропроцессорах, которые можно найти в персональных компьютерах, рабочих станциях и небольших однопроцессорных серверах.

Одной из отличительных особенностей многопроцессорной вычислительной системы является сеть обмена, с помощью которой процессоры соединяются друг с другом или с памятью. Модель обмена настолько важна для многопроцессорной системы, что многие характеристики производительности и другие оценки выражаются отношением времени обработки к времени обмена, соответствующим решаемым задачам. Существуют две основные модели межпроцессорного обмена: одна основана на передаче сообщений, другая - на использовании общей памяти. В многопроцессорной системе с общей памятью один процессор осуществляет запись в конкретную ячейку, а другой процессор производит считывание из этой ячейки памяти. Чтобы обеспечить согласованность данных и синхронизацию процессов, обмен часто реализуется по принципу взаимно исключающего доступа к общей памяти методом "почтового ящика".

С ростом числа процессоров просто невозможно обойти необходимость реализации модели распределенной памяти с высокоскоростной сетью для связи процессоров. С быстрым ростом производительности процессоров и связанным с этим ужесточением требования увеличения полосы пропускания памяти, масштаб систем (т.е. число процессоров в системе), для которых требуется организация распределенной памяти, уменьшается, также как и уменьшается число процессоров, которые удается поддерживать на одной разделяемой шине и общей памяти.

Распределение памяти между отдельными узлами системы имеет два главных преимущества. Во-первых, это эффективный с точки зрения стоимости способ увеличения полосы пропускания памяти, поскольку большинство обращений могут выполняться параллельно к локальной памяти в каждом узле. Во-вторых, это уменьшает задержку обращения (время доступа) к локальной памяти. Эти два преимущества еще больше сокращают количество процессоров, для которых архитектура с распределенной памятью имеет смысл.

Обычно устройства ввода/вывода, также как и память, распределяются по узлам и в действительности узлы могут состоять из небольшого числа (2-8) процессоров, соединенных между собой другим способом. Хотя такая кластеризация нескольких процессоров с памятью и сетевой интерфейс могут быть достаточно полезными с точки зрения эффективности в стоимостном выражении, это не очень существенно для понимания того, как такая машина работает, поэтому мы пока остановимся на системах с одним процессором на узел. Основная разница в архитектуре, которую следует выделить в машинах с распределенной памятью заключается в том, как осуществляется связь и какова логическая модель памяти.

Литература

 

[1] ComputerWorld Россия, № 9, 1995.

[2] К.Вильсон, в сб. "Высокоскоростные вычисления". М. Радио и Связь, 1988, сс.12-48.

[3]. Б.А.Головкин, "Параллельные вычислительные системы". М.. Наука, 1980, 519 с.

[4] Р.Хокни, К.Джессхоуп, "Параллельные ЭВМ. М.. Радио и Связь, 1986, 390 с.

[5] Flynn И.,7., IEEE Trans. Comput., 1972, о.С-21, N9, рр. 948-960.

[6] Russel К.М., Commun. АСМ, 1978, v. 21, № 1, рр. 63-72.

[7] Т.Мотоока, С.Томита, Х.Танака, Т. Сайто, Т.Уэхара, "Компьютеры на СБИС", m.l. М. Мир, 1988, 388 с.

[8] М.Кузьминский, Процессор РА-8000. Открытые системы, № 5, 1995.

[9] Открытые системы сегодня, № 11, 1995.

[10] ComputerWorld Россия, №№ 4, 6, 1995.

[11] ComputerWorld Россия, № 8, 1995.

[12] Открытые системы сегодня, № 9, 1995.

[13] ComputerWorld Россия, № 2, 1995.

[14] ComputerWorld Россия, № 12, 1995.

[15] В. Шнитман, Системы Exemplar SPP1200. Открытые системы, № 6, 1995.

[16] М. Борисов, UNIX-кластеры. Открытые системы, № 2, 1995, c.22-28.

[17] В. Шмидт, Системы IBM SP2. Открытые системы, № 6, 1995.

[18] Н. Дубова, Суперкомпьютеры nCube. Открытые системы, № 2, 1995, сс.42-47.

[19] Д. Французов, Тест оценки производительности суперкомпьютеров. Открытые системы, № 6, 1995.

[20] Д. Волков, Как оценить рабочую станцию. Открытые системы, № 2, 1994, c.44-48.

[21] А. Волков, Тесты ТРС. СУБД, № 2, 1995, сс. 70-78.


Лекция 24. Классификация мультипроцессорных систем по способу организации основной памяти.

1. АРХИТЕКТУРЫ МНОГОПРОЦЕССОРНЫХ СИСТЕМ

Основной характеристикой при классификации многопроцессорных вычислительных систем является способ организации оперативной памяти. В случае наличия общей памяти с равноправным доступом к ней от всех процессоров говорят о симметричных мультипроцессорных системах (SMP), а при использовании распределенной памяти, когда каждый процессор снабжается собственной локальной памятью, и прямой доступ к памяти других процессоров невозможен, речь идет о системах с массовым параллелизмом (MPP). Нечто среднее между SMP и MPP представляют собой NUMA-архитектуры (Non Uniform Memory Access), в которых память физически распределена, но логически общедоступна. При этом время доступа к различным блокам памяти становится неодинаковым. В одной из первых систем этого типа Cray T3D время доступа к памяти другого процессора было в 6 раз больше, чем к своей собственной.

В настоящее время развитие высокопроизводительных вычислительных систем идет по четырем основным направлениям: векторно-конвейерные суперкомпьютеры, SMP системы, MPP системы и кластерные системы. Рассмотрим основные особенности перечисленных архитектур.

1.1. Векторно-конвейерные суперкомпьютеры

Характерной особенностью векторно-конвейерных компьютеров является, во-первых, конвейерная организация обработки потока команд, а, во-вторых, набор векторных операций в системе команд, которые оперируют целыми массивами данных [2]. Исторически это были первые компьютеры, к которым в полной мере было применимо понятие суперкомпьютер. Однако в настоящее время их доля в суперкомпьютерном парке неуклонно снижается ввиду их чрезвычайной дороговизны и невысокой степени масштабируемости. Как правило, несколько таких процессоров (2-16) работают в режиме с общей памятью (SMP), образуя вычислительный узел, а несколько таких узлов объединяются с помощью коммутатора аналогично MPP-системам. Типичными представителями такой архитектуры являются компьютеры CRAY J90/T90, CRAY SV1, NEC SX-4/SX-5.

1.2. Симметричные мультипроцессорные системы SMP

Современные системы SMP архитектуры состоят, как правило, из нескольких однородных микропроцессоров и массива общей памяти (Рис. 1). Все процессоры имеют равноправный доступ к любой точке общей памяти.


Рис. 1. Архитектура симметричных мультипроцессорных систем.

 

Наличие общей памяти значительно упрощает взаимодействие процессоров между собой, однако, за этой кажущейся простотой скрываются большие проблемы, присущие системам этого типа. Помимо хорошо известной проблемы конфликтов при обращении к общей шине памяти возникла и новая проблема, связанная с иерархической структурой организации памяти современных компьютеров. Дело в том, что самым узким местом в современных компьютерах является оперативная память, скорость работы которой значительно отстала от скорости работы процессора. В настоящее время эта скорость примерно в 20 раз ниже требуемой для 100% согласованности со скоростью работы процессора, и разрыв все время увеличивается. Для того, чтобы сгладить разрыв в скорости работы процессора и основной памяти, каждый процессор снабжается скоростной буферной памятью (кэш-памятью), работающей со скоростью процессора. В связи с этим, в многопроцессорных системах, построенных на базе таких микропроцессоров, нарушается принцип равноправного доступа к любой точке памяти. Для его сохранения приходится организовывать аппаратную поддержку когерентности кэш-памяти, что приводит к большим накладным расходам и сильно ограничивает возможности по наращиванию производительности таких систем путем простого увеличения числа процессоров.

В чистом виде SMP системы состоят, как правило, не более чем из 32 процессоров, а для дальнейшего наращивания используется NUMA-технология, которая в настоящее время позволяет создавать системы, включающие до 256 процессоров с общей производительностью порядка 150 млрд. операций в секунду. Системы этого типа производятся многими компьютерными фирмами как многопроцессорные серверы с числом процессоров от 2 до 64 и прочно удерживают лидерство в классе малых суперкомпьютеров с производительностью до 60 млрд. операций в секунду.

1.3. Системы с массовым параллелизмом (МРР)

Компьютеры этого типа представляют собой многопроцессорные системы с распределенной памятью, в которых с помощью некоторой коммуникационной среды объединяются однородные вычислительные узлы (Рис. 2).


 

Рис. 2. Архитектура систем с распределенной памятью.

 

Каждый из узлов состоит из процессора, собственной оперативной памяти, коммуникационного оборудования, подсистемы ввода/вывода, т.е. обладает всем необходимым для независимого функционирования. При этом на каждом узле может функционировать либо полноценная операционная система (как в RS/6000 SP2), либо урезанный вариант, поддерживающий только базовые функции ядра, а полноценная ОС работает на специальном управляющем компьютере (Cray T3E, nCUBE2). Доступ к памяти других процессоров в таких системах, как правило, возможен только с помощью механизма передачи сообщений. Основное достоинство таких систем - это высокая степень масштабируемости. Для достижения необходимой производительности требуется просто собрать систему с нужным числом узлов. Успешно функционируют MPP системы с сотнями и тысячами узлов (ASCI Red - 9632, Blue Mountain - 6144), производительность которых превысила 2 Tflops (2 триллиона оп/сек)[*]. Однако у таких систем есть и существенный недостаток. Межпроцессорные обмены данными в компьютерах этого типа выполняются намного медленнее, чем локальная обработка данных самими процессорами. Поэтому написание эффективных программ для таких компьютеров представляет собой сложную задачу, а для некоторых алгоритмов вообще невозможно.

 

[*] Tflops - единица измерения производительности вычислительных систем. Характеризует количество операций с плавающей точкой, выполняемых за 1 секунду. (1 Tflops = 1 триллион операций/сек)

 

.4. Кластерные системы

Кластерные технологии стали логическим продолжением развития идей, заложенных в архитектуре MPP систем. Если процессорный модуль в MPP системе представляет собой законченную вычислительную систему, то следующий шаг напрашивался сам собой: почему бы в качестве таких вычислительных узлов не использовать обычные серийно выпускаемые компьютеры. Развитие коммуникационных технологий, а именно, появление высокоскоростного сетевого оборудования и специального программного обеспечения, такого как MPI (см. раздел 2.2), реализующего механизм передачи сообщений над стандартными сетевыми протоколами, сделали кластерные технологии общедоступными. Сегодня не составляет большого труда создать небольшую кластерную систему, объединив вычислительные мощности компьютеров отдельной лаборатории или учебного класса.

Привлекательной чертой кластерных технологий является то, что они позволяют для достижения необходимой производительности объединять в единые вычислительные системы компьютеры самого разного типа, начиная от персональных компьютеров и заканчивая мощными суперкомпьютерами. С одной стороны, эти технологии используются как дешевая альтернатива суперкомпьютерам, в частности, одним из первых был реализован проект COCOA [3], в котором на базе 25 двухпроцессорных персональных компьютеров общей стоимостью порядка $100000 была создана система с производительностью, эквивалентной 48-процессорному Cray T3D стоимостью несколько миллионов долларов США. С другой стороны, эти технологии используются для преодоления ограничений, присущих SMP системам и векторно-конвейерным компьютерам.

Кластер - это связанный набор полноценных компьютеров, используемый в качестве единого ресурса. Существует два подхода при создании кластерных систем:

· в единую систему объединяются полнофункциональные компьютеры, которые могут работать, в том числе, и как самостоятельные единицы, например, компьютеры учебного класса или рабочие станции лаборатории;

· целенаправленно создается мощный вычислительный ресурс, в котором роль вычислительных узлов играют промышленно выпускаемые компьютеры, и тогда нет необходимости снабжать такие компьютеры графическими картами, мониторами, дисковыми накопителями и другим периферийным оборудованием, что значительно удешевляет стоимость системы.

В последнем случае системные блоки компьютеров, как правило, компактно размещаются в специальных стойках, а для управления системой и для запуска задач выделяется один или несколько полнофункциональных компьютеров, которые называют хост-компьютерами. Преимущества кластерной системы перед набором независимых компьютеров очевидны. Во-первых, система пакетной обработки заданий позволяет послать задание на обработку кластеру в целом, а не какому-нибудь отдельному компьютеру, что позволяет обеспечить более равномерную загрузку компьютеров. Во-вторых, появляется возможность совместного использования вычислительных ресурсов нескольких компьютеров для решения одной задачи.

Для создания кластера используются компьютеры, которые могут представлять собой как простые однопроцессорные системы, так и обладать сложной архитектурой SMP и даже NUMA.

Разработано множество технологий соединения компьютеров в кластер. Наиболее простым вариантом является использование технологии Ethernet, однако за эту простоту приходится расплачиваться заведомо недостаточной скоростью обменов. Разработчики пакета подпрограмм ScaLAPACK, предназначенного для решения задач линейной алгебры на многопроцессорных системах, в которых велика доля коммуникационных операций, формулируют следующим образом требование к многопроцессорной системе: "Скорость межпроцессорных обменов между двумя узлами, измеренная в Mbyte/sec, должна быть не менее 1/10 пиковой производительности вычислительного узла, измеренной в Mflops"[*] [4]. Коэффициент 1/10 получен из практического опыта, показывающего, что на большинстве приложений реальная производительность вычислительных систем составляет примерно 10% от пиковой производительности. Таким образом, если в качестве вычислительных узлов использовать компьютеры класса Pentium III 500 Mhz (пиковая производительность 500 Mflop), то аппаратура Fast Ethernet (скорость передачи приблизительно 10 Mbyte/sec) обеспечивает только 1/5 от требуемой скорости. Это положение может существенно поправить переход на технологии Gigabit Ethernet.

Ряд фирм предлагают специализированные кластерные решения на основе более скоростных сетей, таких как SCI фирмы Scali Computer (~80 Mbyte/sec) и Mirynet (~40 Mbyte/sec). Активно включились в поддержку кластерных технологий и фирмы-производители высокопроизводительных рабочих станций (SUN, Compaq, Silicon Graphics).

 

 

Список литературы

 

1. Смирнов А.Д. Архитектура вычислительных систем: Учеб. пособие для вузов. М.: Наука. Гл. ред. физ.мат. лит., 1990. 320 с.

2. http://rsusu1.rnd.runnet.ru/tutor/method/m1/page02.html





Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 481; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.