КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вопрос 24 поверхности второго порядка (эллипсоид, цилиндры, конус) и их канонически уравнения. Исследование формы поверхности методом параллельных сечений
Эллипсоид (рис. 4.18) Каноническое уравнение: - трехосный эллипсоид; - эллипсоид вращения вокруг оси Oz; - эллипсоид вращения вокруг оси Oy; - эллипсоид вращения вокруг оси Ox; - сфера. Сечения эллипсоида плоскостями - либо эллипс (окружность), либо точка, либо .
Каноническое уравнение: a = b - конус вращения (прямой круговой). Сечения конуса плоскостями: в плоскости, пересекающей все прямолинейные образующие, - эллипс; в плоскости, параллельной одной прямолинейной образующей, - парабола; в плоскости, параллельной двум прямолинейным образующим, - гипербола; в плоскости, проходящей через вершину конуса, - пара пересекающихся прямых или точка (вершина). Эллиптический цилиндр (рис. 4.24) Каноническое уравнение: при a = b - круговой цилиндр. Гиперболический цилиндр (рис. 4.25) Каноническое уравнение:
Каноническое уравнение: Вопрос25 поверхности второго порядка (гиперболоиды, параболоиды) и их канонические уравнения. Однополостный гиперболоид (рис. 4.20) Каноническое уравнение: a = b - однополостный гиперболоид вращения вокруг оси Oz. Горловой эллипс: Асимптотический конус: Сечения однополостного гиперболоида плоскостями - либо эллипс, либо парабола, либо гипербола, либо пара прямых (прямолинейных образующих).
Двуполостный гиперболоид (рис. 4.21) Каноническое уравнение: a = b - двуполостный гиперболоид вращения вокруг оси Oz. Асимптотический конус: Сечения двуполостного гиперболоида плоскостями: либо эллипс, либо гипербола, либо парабола, либо точка, либо .
Каноническое уравнение: p = q - параболоид вращения вокруг оси Oz. Сечения эллиптического параболоида плоскостями - либо эллипс, либо парабола, либо точка, либо . Гиперболический параболоид (рис. 4.23) Каноническое уравнение: Сечения гиперболического параболоида плоскостями - либо гипербола, либо парабола, либо пара прямых (прямолинейных образующих).
Дата добавления: 2014-11-20; Просмотров: 1534; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |