Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Индуктивные умозаключения и их виды




НЕПРЯМЫЕ (КОСВЕННЫЕ) ВЫВОДЫ

 

К ним относятся: рассуждение по правилу введения имплика­ции; сведение «к абсурду»; рассуждение «от противного» (проти­воречащего).

1. Рассуждение по правилу введения импликации.

Правило вывода сформулировано так:

Данное правило читается так: «Если из посылок гамма (Г) и посылки а выводится заключение b, то из одних посылок Г выводится, что а имплицирует b». Это правило вывода имеет и другое название: «Теорема о дедукции». Здесь «Г» может быть и пустым множеством посылок.

Приведем пример рассуждения студента, поясняющий приве­денное правило. Пусть Г содержит следующие посылки: 1) «Я сдал экзамен по педагогике на «отлично»; 2) «Я сдал экзамен по логике на «отлично»; 3) «Я сдал экзамен по математике на отлично». Посылка а означает: «Я успешно выполнил всю порученную мне работу на факультете». Заключение b означает: «Я получу повышенную стипендию». То, что записано над чертой, будет содержательно прочитано так: «Если я сдал экзамены по педагогике, логике и математике на «отлично» и успешно выполнил всю порученную мне работу на факультете, то из этого последует заключение: «Я получу повышенную стипендию». То, что записано под чертой, содержательно можно прочитать так: Я сдал экзамены по педагогике, логике и математике на «отлич­но». Отсюда следует заключение: «Если я успешно выполню всю порученную мне работу на факультете, то я получу повышенную стипендию».

2. Правило сведения к абсурду. Это правило иначе называется правилом введения отрицания.

Правило читается так: «Если из посылок Г и посылки а выво­дится противоречие, т. е. b и не-b, то из одних Г выводится не-а». Метод сведения к абсурду широко применяется в мышлении, как научном, так и в полемическом и в обыденном.

В классической двузначной логике метод сведения к абсурду выражается в виде формулы:— противоречие или ложь.

Эта формула говорит о том, что суждение а надо отрицать (считать ложным), если из а вытекает противоречие.

Определение отрицания посредством сведения к абсурду, про­тиворечию широко используется не только в классической, но ив неклассических логиках: в многозначных, конструктивных и интуиционистской.

3. Правило непрямого вывода — рассуждение «от противно­го» (противоречащего). Доказательство «от противного» приме­няется тогда, когда нет аргументов для прямого доказательства. Методом «от противного» нередко доказываются математичес­кие теоремы.

Суть рассуждения «от противного» подробно будет показана в теме «Доказательство», в разделе «Косвенное доказательство».

Итак, мы рассмотрели правила прямых и непрямых (косвен­ных) выводов и убедились, что они широко применяются в мыш­лении. При этом было показано, как та или иная форма прямого или косвенного вывода наполняется конкретным содержанием, взятым из областей педагогики, математики, физики, этики и других областей науки и обыденного мышления, а также из опыта преподавания в средней школе.




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 491; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.