Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Непрямое действие ионизирующих излучений на молекулы 2 страница




 

Церебральный синдром

Действие ионизирующих излучений на клетки центральной нервной системы принципиально отличается от их действия на клетки красного костного мозга и кишечника. При облучении центральной нервной системы практически отсутствуют потери за счет репродуктивной гибели клеток. Как известно, нервная ткань, в основном, состоит из высокодифференцированных клеток, не способных к делению. Соответственно, нервные клетки характеризуются и высокой радиоустойчивостью. Интерфазная гибель нейронов происходит при очень высоких дозах излучения, порядка нескольких сотен Грей. Причем, неизвестно, является ли причиной гибели непосредственное повреждение нервных клеток вследствие облучения, или же гибель клеток опосредована повреждением других систем, в первую очередь, кровеснабжающих сосудов.

Таким образом, в радиобиологии человека и животных, выделяют три основных критических органа (систем), ответственных за гибель организма при однократном тотальном облучении. Однако, при других способах и условиях облучения, критическим органом может стать любой орган или любая ткань, поглотившие определенную дозу ионизирующего излучения. С этих позиций рассмотрим радиочувствительность основных органов человека.

 

 

Лекция 6. РЭ Действие ионизирующих излучений на млекопитающих и человека

Как отмечалось, радиочувствительность млекопитающих, в т.ч. и человека, определяется в первую очередь, радиочувствительностью красного костного мозга, так как именно дегенерация кроветворной системы при тотальном облучении приводит к гибели организма. Поэтому количественным критерием радиочувствительности служат эквивалентные дозы, при которых животные погибают вследствие проявления костно-мозгового синдрома. Количественные характеристики радиочувствительности животных можно получить построив кривые выживания. Основное количество особей погибает при облучении в интервале доз 6-8 Гр. Как видно, построив кривую выживания, можно оценить дозы, вызывающие гибель определенного количества животных. Наиболее употребляемыми на практике являются значения LD30 и LD50. Из рисунка видно, что имеется значительный разброс показателя выживаемости отдельных особей при облучении в одинаковых дозах. Этот факт свидетельствует о вариабельности признака индивидуальной радиочувствительности у экспериментальных животных. О значительных различиях в индивидуальной чувствительности животных свидетельствует также наличие таких критериев как LD30, LD50, т.е. определенные дозы облучения приводят гибели 30, 50 % облученных особей. Необходимо отметить, что индивидуальные различия в радиоустойчивости наблюдаются не только у представителей одного вида, но и у животных одной чистой линии, где особи характеризуются идентичным генотипом.

Выживание (гибель) млекопитающих в исследуемом интервале доз определяется, в первую очередь, количеством неповрежденных стволовых клеток, ответственных за обновление клеток крови.

Таким образом, степень устойчивости животных к ионизирующему излучению сильно колеблется в пределах одного вида, и радиочувствительность определяется многими факторами (возраст, пол, физиологическое состояние организма в момент и после облучения). Поглощение млекопитающими доз излучения до 10 Гр, вызывает появление многообразных симптомов лучевой болезни. Проявления симптомов лучевой болезни экспериментально изучено на представителях различных видов млекопитающих (мыши, крысы, собаки, овцы, козы, лошади, обезьяны).

 

Лучевая болезнь человека. Формы проявления лучевой болезни

Сведения о лучевой болезни человека появились после 1945 года. Наблюдения за уцелевшими жителями городов Хиросима и Нагасаки позволили получить первые данные о клинических проявлениях радиационного поражения людей. В дальнейшем проявление лучевой болезни было описано многократно у людей, получивших радиационное облучение при различных обстоятельствах. Многие случаи заболеваний людей после облучения, связаны с авариями на АЭС, на атомных подводных лодках, при облучении с медицинским целями. При облучении определенном интервале доз (1- 6 Зв), в организме возникает определенный комплекс изменений, который приводит к болезни и может вызвать его гибель человека. Этот комплекс изменений в организме, вызванный поражающим действием ионизирующего излучения, называют лучевой болезнью. Лучевая болезнь может провялятся в многообразных формах. Формы проявления болезни человека зависят от следующих факторов: от вида ионизирующего излучения (электромагнитное или корпускулярное с различными коэффициентами качества), от способа получения облучения (общее или местное, равномерное или неравномерное, внешнее или внутреннее), от длительности облучения (однократное, многократное, пролонгированное, хроническое). Учитывая вышеперечисленные факторы, определенный комплекс клинических проявлений лучевого поражения человека, можно условно отнести к одному из нижеперичисленных трех форм:

а) острая лучевая болезнь при относительно равномерном облучении

б) острые лучевые поражения при неравномерном облучении

в) хроническая лучевая болезнь

 

Острая лучевая болезнь при относительно равномерном облучении

По степени тяжести проявления острая лучевая болезнь подразделяется на 4 категории: слабая, средняя, тяжелая, крайне тяжелая. В большинстве случаев, клинические проявления болезни обнаруживаются при поглощенных дозах рентгеновского и g-излучения более 1 Гр (Дэкв > 1 Зв). При меньших дозах клинические проявления могут отсутствовать или быстро проходят. При прогнозировании степени тяжести лучевой болезни следует ориентироваться на следующие примерные значения эквивалентной дозы: 1-2 Зв - первая (слабая) степени тяжести; 4 - 2 Зв - вторая (средняя) степень тяжести; 4 -6 Зв - третья (тяжелая) степень тяжести; более 6 Зв – четвертая (крайне тяжелая) степень тяжести. При тотальном однократном облучении в интервале доз 6 -10 Зв смерть наступает вследствие поражения кроветворной и желудочно-кишечной системы. При облучении такими дозами в отдельных случаях существует вероятность выживания человека возможно только при специальном лечении.

При облучении интервале доз 10 - 20 Зв возникает типичная форма желудочно- кишечного поражения. Смерть облученного человека наступает в течение 8-16 суток, выживание невозможно ни при каких условиях. При облучении в дозах 20 - 80 Зв смерть человека наступает через 4 - 7 суток вследствие поражения кровеносных сосудов, в т.ч. и сосудов мозга.

Облучение дозами свыше 80 Зв приводит к церебральной форме поражения вследствие дегенерации центральной нервной системы. Облученный человек погибает в течение 1 - 2 суток вследствие паралича всех систем и органов.

Острая лучевая болезнь протекает волнообразно. Различают три периода протекания болезни: формирования, восстановления, исходов и последствий. В свою очередь, период формирования четко можно разделить на 4 фазы: первичной острой реакции, латентная и кажущегося клинического благополучия, выраженных клинических симптомов (разгар болезни), раннего восстановления.

Фаза первичной острой реакции

Первичные реакции организма на высокие дозы ионизирующих излучений появляются в течение первых минут или часов после облучения. У облученного человека появляется тошнота, рвота, диспепсия, исчезает аппетит. Человек может ощущать тяжесть в голове, головную боль, общую слабость, сонливость. Эти симптомы проявляются во всех случаях, когда эквивалентная доза превышает 2 Зв. Продолжительность ощущений зависит от поглощенной дозы: чем она выше, тем быстрее проявляются эти реакции, тем они более выражены и более продолжительны. Проявление острых первичных реакций может продолжаться от 1 до 3 суток. Наиболее диагностическое значение для установления полученной дозы и степени тяжести болезни имеет время появления тошноты и рвоты, диспептического синдрома. Развитие шокоподобного состояния, потеря сознания, резкое падение артериального давления, интенсивный диспептический синдром, субфибрильная температура тела, свидетельствуют о поглощении человеком очень высокой, смертельной дозы (>10 Зв). На облученных участках кожи в этом случае могут появляться покраснения по типу солнечных ожогов. Количественные изменения в клеточных популяциях костного мозга удается обнаружить только через 2-3 сутки после облучения. Обнаруживается уменьшение количества молодых клеток, снижение митотического индекса ткани. Цитологические методы позволяют обнаружить изменения в структуре клеток (абберации хромосом, разрывы плазмаллеммы) уже в первые часы после облучения. В течение первых суток после облучения определяются и изменения биохимических параметров в периферической крови. Эти изменения заключаются в повышении активности гидролитических ферментов (протеиназ, амилаз, липаз), повышение уровня сахарозы, билирубина, снижение концентрации электролитов, в первую очередь, концентрции NaCl и KCl.

Фаза кажущегося благополучия (латентная фаза)

Через 2 –4 суток после облучения все болезненные ощущения и симптомы болезни исчезают, и самочувствие облученного человека как будто бы нормализуются. Из-за отсутствия внешних клинических признаков эта фаза называется скрытой. В зависимости от тяжести болезни, такое состояние больного может продолжаться от 14 до 32 суток. В этот период начинается выпадение волос, появляются различные неврологические симптомы. При облучении дозами выше 10 Зв латентная фаза болезни отсутствует.

Мнимость благополучия облученного человека в этот период легко выявляется проведением биохимического и цитологического анализов крови. В перифиреческой крови обнаруживается лимфопения и слабая тромбоцитопения. У мужчин в этой фазе болезни регистрируется подавление сперматогенеза, у женщин- овогенеза.

Фаза выраженных клинических реакций (разгар болезни)

На 15 – 35 сутки после облучения самочувствие больных резко ухудшается, нарастает слабость, повышается температура тела. Происходит снижение массы тела больного человека (до 40 %). В этот период проявляются различные нарушения основных физиологических процессов, обеспечивающих гомеостаз организма. Наиболее опасными для жизни являются кровотечения вследствие нарушения и структуры кровеносных сосудов и снижения свертываемости крови, на фоне продолжающейся тромобоцитопении (геммарогический синдром). Кровотечения и инфекционные осложнения являются основной причиной гибели больных в эту фазу. Клетки крови в этот период представлены в основном эритроцитами и лимфоцитами. В конце фазы начинает проявляться и анемия. В плазме крови обнаруживается повышенное содержание белков и пептидов.

При интенсивном лечении, продолжительность фазы составляет 1 – 3 недели. В случае благоприятного исхода болезнь переходит в четвертую фазу.

Фаза раннего восстановления

Начало этой фазы характеризуется восстановлением нормальной температуры тела, улучшением самочувствия, появлением аппетита, восстановлением сна больного. Постепенно исчезают геммарогические явления, начинается повышение массы тела. Происходит постепенное восстановление биохимических и цитологических показателей крови, связанное с регенеративными процессами в кроветворных органах. Однако, в начале этой фазы число эритроцитов в крови продолжает снижаться и этот показатель нормализуется только к концу фазы. Продолжительность фазы восстановления составляет 2 – 3 месяца. К концу этого периода самочувствие больного в основном нормализуется. Продолжается выпадение волос, и их рост частично восстанавливается только через 6 – 10 месяцев после облучения. Генеративная способность мужчин также восстанавливается не ранее 6 -7 месяцев после облучения. Генеративная функция женщин, если она нарушена облучением, не восстанавливаются.

Таким образом, фаза раннего восстановления завершается нормализацией основных жизнеобеспечивающих функций организма и переходит в период исходов и последствий лучевой болезни. Этот период может продолжаться несколько лет и он характеризуется проявлением различных, в том числе и отдаленных последствий облучения.

Анализ случаев лучевой болезни у человека и эксперименты на млекопитающих показывают, что острая лучевая болезнь при однократном тотальном облучении проявляется, в первую очередь, вследствие поражения системы кроветворения. Критическим органом в этом случае является кроветворная система. Механизмы проявления лучевой болезни в экспериментальных условиях изучены на животных, и их можно экстраполировать и на человеческий организм. Однако, несмотря на принципиальное сходство поражения млекопитающих животных и человека, протекание лучевой болезни у людей имеет свои особенности. Ни у одного вида экспериментальных животных не удалось смоделировать острую лучевую болезнь, в точности совпадающую по показателям с проявлением таковой у человека.

 

Острые лучевые поражения при неравномерном облучении

Рассмотренный выше вид лучевой болезни человека при относительно равномерном внешнем облучении встречается довольно редко. В основном этот вариант болезни изучен на модельных опытах с лабораторными животными. В большинстве случаев при облучении человека возникают различные типы неравномерного облучения. Неравномерность облучения человека (поглощение неодинаковых доз различными участками организма) обуславливается различными факторами: типом излучения (электромагнитное, заряженные частицы, нейтроны), мощностью экспозиционной дозы излучения, положением облучаемого объекта к источнику излучения, продолжительностью облучения и т.д. Можно выделить два крайние формы неравномерного облучения человека. Общее неравномерное облучение тела, которое происходить вследствие неодинакового распределения энергии излучения по глубине тканей. Неравномерность облучения в этом случае определяется проникающей способностью ионизирующей радиации. Например, при внешнем b- облучении, наибольшее поражение испытывает кожа и подкожные ткани. Внутренние органы при этом практически не облучаются. Наоборот, внутреннее облучение, вызванное инкорпорированными a- нуклидами, вызовет поражение, в первую очередь, желудочно-кишечного тракта. Кожный покров при таком облучении не испытает никакого поражающего действия ионизирующего излучения.

Вторая крайняя форма неравномерного облучения – это локальное (местное) облучение. Локальное облучение имеет место при экранировании или при прицельном облучении определенных участков организма. Локальное облучение человек может получить при медицинских процедурах. Например, при стоматологической рентгенографии облучается лицевая часть головы, при флюорографии – грудная клетка. Между двумя крайними формами неравномерного облучения встречаются различные их сочетания. Соответственно, клинические симптомы, возникающие при поражении, также многообразны. Как отмечалось выше, при однократном равномерном тотальном облучении гибель человека вызывается поражением трех основных критических органов: красного косного мозга, желудочно-кишечного тракта, нервной системы. Однако, при неравномерном облучении тела, критическим органом могут оказаться и другие органы и ткани. Например, при внешнем облучении излучениями с малой проникающей способностью (a-частицы, b-излучение, длинноволновые рентгеновские лучи) критическим органом может оказаться кожный покров. В этом случае, исход поражения организма определяется размером облученной площади, и степенью ожогов. В литературе имеются много примеров неравномерного локального облучения человека большими дозами (10 – 5000 Гр). При этом критическими органом оказывались различные органы и ткани: кожа, мышцы, сердце, легкие и другие внутренние органы, нервная ткань. Гибель облученных людей происходило от перитонита, остановки сердца, сепсиса, общего расстройства гемодинамики. Смерть людей наступала раньше, чем проявлялись нарушения в кроветворении или же независимо от этих нарушений.

Таким образом, для определения типа и степени поражения ионизирующим излучениями необходимо знать положение пострадавшего к источнику излучения, количественные и качественные характеристики поля излучения, продолжительность облучения. Чем точнее будут определены эти факторы, тем правильнее будет прогнозирование формы поражения облученного и, следовательно, правильно будет определена тактика его лечения.

На примере пострадавших при аварии на Чернобыльской АЭС, рассмотрим, как могут различаться степень поражения и лечение людей, находившихся на месте аварии одинаковое время. Теоретически эти люди должны были бы получить одинаковую дозу ионизирующего излучения, и степень поражения их должна была бы быть схожей.

В момент аварии находились на станции и получили облучение (в основном, g-излучение) 350 человек. Эти люди были осмотрены в течение 12-36 часов после аварии и 291 человек были направлены в клиники с прогнозированием у них острой лучевой болезни. Ниже приведены данные о 129 больных, направленных в клиники г. Москвы. Основными критериями при первичной диагностике для определения поглощенной дозы и тяжести болезни были: наличие, время появления и интенсивность тошноты и рвоты, интенсивность эритемы кожи и слизистой ткани, снижение числа лимфоцитов в периферической крови. По проявлению этих признаков в течение первых двух суток после облучения ставился диагноз лучевой болезни. Как оказалось, первичный диагноз по этим критериям характеризуется высокой специфичностью. Предварительный диагноз лучевой болезни впоследствии подтвердился у 80 % облученных людей. Для более точной оценки поглощенной дозы и степени тяжести болезни был использованы методы определения количества лимфоцитов в периферической крови. Определяли также количество аберраций хромосом в культуре клеток лимфоцитов и в культуре клеток костного мозга. Измерение этих показателей позволили разделить пострадавших на 4 группы по степени проявления костно-мозгового синдрома, обусловленного внешним g -излучением. В группу больных с первой степенью тяжести болезни (0,8 – 2 Гр) попали 31 человек, во вторую - (2,0 – 4 Гр) – 3 человека. Группу больных с третьей степенью тяжести (4,1- 6 Гр) составляли 21 человек, с четвертой степенью тяжести (6 –16 Гр) – 20 человек. Была выделена группа больных (41 человек), получивших дозу облучения меньше 1 Гр.

Особое внимание было уделено раннему выявлению больных с необратимой депрессией красного костного мозга, требовавшего неотложного решения о трансплантации этой ткани. Принадлежность к этой группе устанавливали по следующим признакам: наличие рвоты в течение 30 минут, наличие диспептического синдрома в течение 2-х часов, увеличение околоушных желез в течение 36 часов после облучения. В течение первых трех месяцев умерли все 20 больных из четвертой группы и 7 человек из третьей группы. Один больной из второй группы умер на 96 сутки после облучения от ишемического инсульта.

Особенность поражения при этой аварии заключалось в проявлении лучевых ожогов поверхности тела, вызванных интенсивным g-излучением. В этом случае наблюдалось неравномерное распределение энергии по глубине тканей, когда поглощенная кожей доза в 10-20 раз превышала такую дозу в глубоко расположенных тканях, в частности, в красном костном мозге. Радиационные ожоги у некоторых больных достигали до 100 % всей поверхности тела. По крайней мере, в 2/3 случаев гибели, критическим органом являлась кожа и смерть людей наступила именно от радиационного поражения кожи.

 

Хроническая лучевая болезнь

 

Хроническая лучевая болезнь развивается в результате длительного облучения при малой мощности дозы облучения. Симптомы этой болезни появляются после накопления суммарной дозы 0,7 – 1 Зв, при облучении с малыми мощностями дозы. Эта форма лучевой болезни характеризуется определенной фазностью течения и особенности проявления болезни связаны с неравномерностью распределения энергии облучения в организме. Хроническая лучевая болезнь, возникшая в результате внешнего облучения, характеризуется вовлечением многих органов и систем. Клинические синдромы болезни проявляются с определенной периодичностью, связанной с динамикой облучения. Особенность проявления этой болезни заключается в том, что хроническое облучение приводит к поражению в основном, стабильных тканей и органов, содержащих высокоспециализированные дифференцированные клетки. При хроническом облучении возникают структурные и функциональные изменения в медленно обновляющихся клетках и тканях, аккумуляция этих изменений приводит к нарушению нормального функционирования органа или системы. Хроническая лучевая болезнь проявляется в нарушении работы нервной, эндокринной, сердечно- сосудистой систем, изменений в опорно- двигательной системе. Наоборот, активно пролиферирующие ткани при облучении дозами небольшой мощности успевают восстанавливать свои морфологические и функциональные показатели вследствие интенсивного клеточного обновления.

В случае длительного облучения определенного участка организма при внешнем или внутреннем облучении, пороговые дозы значительно выше, чем при общем однократном облучении. Клиническая картина болезни в этом случае определяется локализацией облучения и радиочувствительностью облученной ткани. Например, при хроническом поступлении в организм радиоактивного йода 131I происходит накопление его в щитовидной железе, что приводит к локальному облучению этой железы и нарушению его функционирования. Хроническое попадание в организм радиоактивного фосфора 35Р приводит накоплению этого изотопа в эритроцитах, что вызывает анемию. При накоплении 226Ra в костной ткани развиваются разные формы остеосарком. Длительная ингаляция радиоактивных газов вызывает развитие раковых заболеваний в бронхах, в легких. Хроническое поступление радионуклидов с пищей и с водой может привести к злокачественным заболеваниям пищеварительной и выделительной систем.

В большинстве случаев, хроническая лучевая болезнь людей возникает в результате нарушения ими правил и норм работы с источниками ионизирующей радиации. Поэтому основным условием профилактики этой болезни является строгое соблюдение техники безопасности работы с радионуклидами и другими источниками ионизирующих излучений.

Радиация и рак

 

Сведения о том, что ионизирующая радиация обладает канцерогенным действием, появились вскоре после открытия радиоактивности. До сих пор именно это действие облучения вызывает наибольшие опасения у людей. Однако следует признать, что многие аспекты данной проблемы остаются до сих пор недостаточно выясненными или неправильно истолкованными.

Прежде всего следует иметь в виду, что злокачественные опухоли радиационного происхождения и возникшие от других причин (физической, химической или биологической природы) совершенно одинаковы по проявлению, а поэтому факта наличия радиационного воздействия недостаточно, чтобы утверждать, что любой случай заболевания раком в этих условиях вызван именно радиацией (за исключением некоторых очень редких разновидностей рака, например, миеловидной лейкемии, для которой установлена причинная связь с ионизирующим излучением).

По некоторым оценкам, если факторы окружающей среды ответственны примерно за 80%, то природный радиационный фон – приблизительно за 0,7% всех случаев заболевания раком. Смертность от всех видов рака составляет в развитых странах около 20%, по среднемировым данным – 15 (±3)%, с ежегодным приростом до 1,5%. Таким образом, канцерогенное действие радиации проявляется на неизмеримо более высоком фоне действия других, обычных причин. Выявление радиогенного рака от малых доз облучения (менее 0,2– 0,5 Зв) оказывается совершенно невозможным из-за статистических ограничений: для получения статистически достоверных данных требуются наблюдения над очень большими выборками, в сотни тысяч и даже в миллионы человек в каждой группе.

Иллюстрацией этого могут быть расчеты Кулландера и Ларссо-на (1991) для Швеции, которая подверглась заметному радионуклидному загрязнению во время чернобыльской аварии. На начало 1990-х гг. статистика заболеваемости раком в Швеции составляла 25 000–30 000 случаев в год, а от аварии на Чернобыльской АЭС по расчетам ожидаются дополнительно 4 случая в год. Вероятность заболевания раком за всю жизнь здесь равняется 30 % (34% – в крупных городах, 29% - в менее густонаселенных районах), и доза в 1 мЗв (ожидаемая средняя доза облучения, обусловленная чернобыльской аварией) увеличит вероятность заболевания раком до 30,002%, а при дозе в 10 мЗв (в наиболее загрязненных районах) -до 30,02%. Ясно, что проверить это невозможно.

Вероятное повышение частоты онкологических заболеваний чернобыльского происхождения у нас в стране также оказалось намного меньше среднегодовых колебаний заболеваемости по областям чернобыльской зоны (к тому же на фоне ежегодного прироста спонтанной заболеваемости, который наблюдался здесь и в соседних регионах и ранее, до 1986 г.).

Вероятность канцерогенного, как и мутагенного, действия радиации на человека можно попробовать рассчитать исходя из коэффициентов риска, которые предоставляют Научный комитет ООН по действию атомной радиации (НКДАР) и Международная комиссия по радиологической защите (МКРЗ). Однако нужно иметь в виду, что коэффициенты риска даны этими организациями условно, исходя из беспороговой линейной концепции, т. е. на основании представления о линейности соотношения дозы и эффекта, а это, как было показано выше, в общем неверно. Только в силу малой изученности действия радиации в диапазоне малых доз допускается использование этих коэффициентов риска как рабочих для ориентировочных расчетов необходимости тех или иных защитных мер (отдавая себе отчет в том, что результаты расчета значительно завышают риск). Совершенно необоснованными являются довольно частые попытки, по сути дилетантские, использовать эти условные коэффициенты для прогноза числа дополнительных смертей от рака в целом на большой регион (например, на всю Чернобыльскую зону).

При выяснении причины возникновения ракового заболевания важно также иметь в виду, что оно не может развиться вскоре после облучения. Во всех экспериментальных исследованиях по лучевому канцерогенезу у животных (как, впрочем, и при действии не только радиации, но и других канцерогенных агентов) появлению злокачественного новообразования всегда предшествовал довольно значительный латентный период. То же замечено и в наблюдениях над людьми. Так, частота появления случаев рака щитовидной железы у детей в чернобыльской зоне после 1986 г. стала заметно превышать прежний уровень только после 1990 г. Этот вид медицинских эффектов стал позднее основным следствием чернобыльской катастрофы у населения.

Вероятность мутации, которая может привести к злокачественной трансформации клетки, очень низка (~10-18), и при общей численности клеток в организме человека порядка 1014 получается, что отмеченное выше событие переходит из разряда вероятных в реальные при ~104 случаев ионизации или возбуждения в отдельной клетке. Канцерогенез – это последовательность ряда стадий развития процесса, включающая стадии инициации, промоции, прогрессии, метастазирования. Согласно Р. Петрову, в организме человека присутствует 106 инициированных клеток, но к летальному исходу приводит только одна такая клетка в среднем на 4–5 человек. Для трансформации клетки требуется последовательное осуществление нескольких мутаций (в различных генах или локусах), и не все они могут быть обязательно радиогенными. На этом пути возможны также случаи спонтанной регрессии, т. е. самовыздоровления. Латентный период ракового заболевания может достигать 40 лет и более, фактически уходя иногда за предел продолжительности жизни. (Это является одной из причин того, что общая смертность от рака у населения благополучных стран обычно выше, соответствуя большей средней продолжительности жизни в этих странах.)

По современным представлениям, главным фактором противоопухолевой защиты является механизм апоптоза или запрограммированного «самоубийства» генетически дефектных клеток, который приводит к элиминации постоянно возникающих в организме клеток с мутациями, способными привести к злокачественной трансформации. Ослабление функций апоптоза при старении организма в результате накопления генетических ошибок в соматических клетках, как и сходные с этим нарушения от действия радиации, и приводят к увеличению вероятности онкологических заболеваний.

 

 

Контрольные вопросы и задания.

 

1. Как Вы понимаете термин «критический орган»? Какие ткани, органы человека могут стать критическим органом при облучении?

2. При ликвидации радиационной аварии, трое работников в течение 1 часа, получили соответственно, следующие дозы g - излучения:

1. 0,2 Гр 2. 1,5 Гр 3. 2,5 Гр

Какие последствия для здоровья этих людей вызовет такое облучение?

3. Чем определяется наличие латентной фазы при течении острой лучевой болезни? При каких условиях эта фаза может отсутствовать?

4. Объясните, почему хроническая лучевая болезнь возникает вследствие поражения более радиоустойчивых тканей, органов.

5. Какими факторами определяется степень тяжести лучевой болезни?

6. Через 1 час после спуска в шахту, где возможна повышенная радиация, у шахтера закружилась голова, его вырвало. Через 3 суток у него возникло подозрение, что он облучился высокой дозой ионизирующей радиации. Как можно определить, получил ли он радиационную дозу и примерно какую?

7. Какая основная причина опустошения пула зрелых клеток перифирической крови при лучевой болезни?

8. В какой фазе острой лучевой болезни наблюдается резко выраженная анемия?

9. При облучении в каких условиях развивается хроническая лучевая болезнь у человека?




Поделиться с друзьями:


Дата добавления: 2014-11-08; Просмотров: 599; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.059 сек.