Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лазерная стимуляция при нарушениях аккомодационного аппарата глаза




Применение лазерных интерференционных структур для лечения нарушений сенсорного и аккомодационного аппаратов глаза

Сразу после появления газовых лазеров свойство высокой когерентности их излучения стало использоваться при разработке дифференциальных методов исследования рефракции глаза (лазерная рефрактометрия) и разрешающей способности его сенсорного аппарата (ретинальная острота зрения) [4,18]. Эти методы позволяют определять функциональное состояние оптического и сенсорного отделов глаза без учета их взаимного влияния на результат.

Высококонтрастная структура полос, образуемая непосредственно на сетчатке с помощью двухлучевой интерференции, а также случайная интерференционная картина (спекл-структура) нашли применение в эффективных методах лазероплеоптического лечения [2,19].

Лазероплеоптическое лечение различных видов амблиопии имеет ряд преимуществ по сравнению с ранее известными методами ("слепящее" раздражение светом макулярной области по Аветисову, общий засвет центральной зоны сетчатки белым и красным светом по Ковальчуку, воздействие на амблиопичный глаз вращающейся контрастной решеткой с переменной пространственной частотой [3, 9, 16]). Помимо адекватной световой биостимуляции, лазерплеоптическое лечение позволяет значительно улучшать частотно-контрастную характеристику зрительного анализатора за счет воздействия на него пространственно протяженной интерференционной структуры. Четкая интерференционная картина создается на сетчатке независимо от состояния оптической системы глаза (при любых видах аметропии, помутнении сред глаза, узком и дислоцированном зрачке).

Особое значение лазероплеоптические методы приобретают при лечении детей раннего возраста с обскурационной амблиопией благодаря возможности создания четкого движущегося ("живого") ретинального изображения без участия сознания пациента. Для этой цели применяют аппарат МАКДЭЛ-00.00.08.1, в котором используется красное излучение гелий-неонового лазера. Он имеет гибкую световодную систему с рассеивающей насадкой, на выходе которой образуется спекл-структура с плотностью мощности излучения 10-5 Вт/см2 (рис. 1)

 

Нарушения аккомодационной способности глаз наблюдаются при различных заболеваниях. Они сопровождают такие патологические состояния, как нистагм, косоглазие, зрительное утомление, заболевания центральной нервной системы и др. Особое место занимает прогрессирующая близорукость, наблюдаемая примерно у 30% населения развитых стран. Прогрессирующая близорукость в течение длительного времени занимает одно из ведущих мест в структуре инвалидности по зрению. В настоящее время является общепризнанной гипотеза о патогенетическом значении ослабленной аккомодации в происхождении миопии.

На основании данных о роли ослабленной аккомодации была выдвинута идея о возможности профилактики близорукости и ее стабилизации путем воздействия на аккомодационный аппарат глаза при помощи физических упражнений и лекарственных средств. В последние годы получены многочисленные клинические подтверждения положительного влияния лазерного излучения на цилиарное тело при транссклеральном воздействии. Это проявляется в улучшении гемодинамики цилиарного тела, повышении запаса относительной аккомодации, уменьшении астенопических явлений.

Для воздействия на патологически измененный аккомодационный аппарат применяют различные методы: физические (специальные упражнения с линзами, домашние упражнения, тренировки на эргографе); медикаментозное лечение (инстилляция мезотона, атропина, пилокарпина и др. сосудорасширяющих средств, витаминотерапия). Однако эти методы не всегда дают положительный эффект.

Один из перспективных методов воздействия на ослабленную цилиарную мышцу при миопии - применение низкоинтенсивного лазерного излучения (НИЛИ) инфракрасного диапазона [3], не вызывающего патологических изменений в облучаемых тканях. Нами разработан лазерный аппарат МАКДЭЛ-00.00.09, который позволяет осуществлять бесконтактное транссклеральное облучение цилиарной мышцы.

При гистологических и гистохимических экспериментальных исследованиях было выявлено положительное влияние лазерного излучения на клетки сетчатки и хрусталика. Исследования глаз кроликов после лазерного воздействия, энуклеированных в разные сроки наблюдения, показали, что роговица оставалась без изменений, эпителий ее сохранный на всем протяжении, параллельность роговичных коллагеновых пластин не была нарушена. Десцеметова оболочка была хорошо выражена на всем протяжении, слой эндотелия без патологических изменений. Эписклера, особенно склера, также без патологических изменений, строение коллагеновых волокон не нарушено. Угол передней камеры открыт, трабекула не изменена. Хрусталик прозрачен, его капсула, субкапсулярный эпителий и хрусталиковое вещество без патологических изменений. В радужной оболочке патологии также не определяется, ширина зрачка подопытного и контрольного глаза одинакова. Однако при малых дозах облучения во все сроки наблюдения обнаруживались изменения в эпителиальном слое цилиарного тела.

В контрольных глазах цилиарный эпителий гладкий однослойный, в цитоплазме клеток отсутствует пигмент. Форма клеток по протяженности меняется от цилиндрической до кубической, высота их уменьшается по направлению сзади наперед. Непосредственно перед сетчаткой клетки вытянуты в длину. Ядра располагаются, как правило, ближе к основанию клеток.

В опыте при небольшой дозе облучения наблюдалась очаговая пролиферация беспигментных эпителиальных клеток цилиарного тела. Эпителий в этой зоне оставался многослойным. Некоторые эпителиальные клетки были увеличены. Обнаруживались гигантские многоядерные клетки. Такие изменения цилиарного эпителия отмечали как через 7 дней, так и через 30 дней после облучения. При увеличении дозы облучения в 10 раз подобных изменений в цилиарном эпителии не наблюдали.

Электронно-микроскопическое исследование эпителиальных клеток цилиарного тела также позволило установить ряд изменений: ядра округлоовальные с дисперсно расположенным в них хроматином; значительно выражена цито-

 


 

Рис. 2. Ультраструктура эпителиальной клетки цилиарного тела после облучения низкоинтенсивным лазерным излучением. Многочисленные митохондрии (М)
в цитоплазме клеток х 14000.


плазматическая сеть с различными канальцевыми цистернами, большим количеством свободных рибосом и полисом, множественными везикулами, беспорядочными тонкими микротрубочками. Наблюдались скопления многочисленных митохондрий, более выраженных, чем в контроле, что связано с усилением кислородозависимых процессов, направленных на активацию внутриклеточного метаболизма (рис.2).

Гистохимически определялось интенсивное накопление свободных гликозаминогликанов в основной цементирующей субстанции соединительной ткани цилиарного тела. В отростчатой части цилиарного тела они определялись в большем количестве, чем в соединительной ткани, расположенной между мышечными волокнами. Их распределение носило в основном равномерный разлитой характер, иногда с более выраженными очаговыми накоплениями. В контрольной серии глаз такого интенсивного накопления гликозаминогликанов не наблюдалось. В некоторых глазах отмечалось активное накопление гликозаминогликанов во внутренних слоях роговицы и склеры, прилежащих к цилиарному телу. Реакция с толуидиновым синим выявила интенсивную метахромазию коллагеновых структур, расположенных между мышечными волокнами и в отростчатой части цилиарного тела с преобладанием в последней. Использование красителя с рН4,0 позволило определить, что это кислые мукополисахариды.

Таким образом, результаты морфологического исследования цилиарного тела позволяют сделать заключение, что во все сроки наблюдений при различных дозах лазерного излучения в оболочках глазного яблока не наблюдалось каких-либо деструктивных изменений, что свидетельствует о безопасности лазерного воздействия. Дозы малой мощности усиливают пролиферативную и биосинтетическую активность соединительнотканных компонентов цилиарного тела.

Для апробации способа транссклерального воздействия на цилиарную мышцу было отобрано 117 школьников в возрасте от 7 до 16 лет, у которых миопия наблюдалась в течение 2 лет. К на­чалу лечения величина близорукости у детей не превышала 2,0 дптр. Основную группу (98 человек) составили школьники с миопией в 1,0 - 2,0 дптр. У всех детей выявлено устойчивое бинокулярное зрение. Острота зрения с коррекцией равнялась 1,0.

У обследованных школьников с миопией начальной степени имелось выраженное нарушение всех показателей аккомодационной способности глаз. Влияние на нее лазерного воздействия оценивалось путем измерения резерва относительной аккомодации и по результатам эргографии и реографии. Результаты исследований представлены в табл. 2 и 3.


Таблица 2

Положительная часть относительной аккомодации (дптр) у детей
с миопией до и после лечения (M±m)

Возраст детей, годы Число обследованных До лечения После лечения
7-9   l,64±0,16 3,98±0,29
10-12   l,76±0,33 3,86±0,26
13-16   2,06±0,28 4,69±0,24
7-16   l,81±0,41 3,89±0,26


Таблица 3

Положение ближайшей точки ясного видения до и после транссклерального
лазерного воздействия на цилиарную мышцу (M±m)

Возраст детей, годы Число пролеченных Положение ближайшей точки ясного видения, см Изменение положения
  Глаз до лечения после лечения ближайшей точки ясного видения, см
7-9   6,92±1,18 6,60±1,17 0,42
10-12   7,04±1,30 6,16±0,62 0,88
13-16   7,23±1,01 6,69±0,66 0,72
7-16   7,10±1,16 6,36±0,81 0,76


Таблица 4




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 1275; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.