КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Т а б л и ц а 3.4
Т а б л и ц а 3.3 Т а б л и ц а 3.2 Т а б л и ц а 3.1 Таблица переходов и входов автомата Мили
Таблица переходов и входов автомата Мили с тремя состояниями (z0, z1, z2), двумя входными (x1, x2) и двумя выходными (y1, y2) сигналами
Описание работы F –автоматов Мура иллюстрируется табл.3.3, а пример табличного способа задания F –автомата Мура с пятью состояниями (z0, z1, z2, z3, z4), двумя входными (x1, x2) и тремя выходными (y1, y2, y3) сигналами приведён в табл.3.4. Графический способ задания конечного автомата использует понятие направленного графа. Граф автомата представляет собой набор вершин, соответствующих различным состояниям автомата и соединяющих вершины дуг графа, соответствующих тем или иным переходам автомата. Если входной сигнал xk вызывает переход из состояния zi в состояние zj, то на графе автомата дуга, соединяющая вершину zi с вершиной zj, обозначается xk. Для того чтобы задать функцию выходов, дуги графа необходимо отметить соответствующими выходными сигналами.
Отмеченная таблица переходов автомата Мура
Отмеченная таблица переходов автомата Мура с пятью состояниями (z0, z1, z2, z3, z4), двумя входными (x1, x2) и тремя выходными (y1, y2, y3) сигналами
Для автоматов Мили эта разметка производится так: если входной сигнал xk действует на состояние zi, то, согласно сказанному, получается дуга, исходящая из zi и помеченная xk; эту дугу дополнительно отмечают выходным сигналом y = ψ (zi, xk). На рис. 3.35 приведён заданный ранее табл.3.2 граф F –автомата Мили. Рис. 3.35. Граф автомата Мили
Для автоматов Мура аналогичная разметка графа такова: если входной сигнал xk, действуя на некоторое состояние zi автомата, вызывает переход в состояние zj, то дугу, направленную в zj и помеченную xk, дополнительно отмечают выходным сигналом y = ψ (zj, xk). На рис. 3.36 приведён заданный ранее табл.3.4 граф F –автомата Мура.
Рис. 3.36. Граф автомата Мура
Матричный способ задания конечного автомата часто является более удобной формой. При этом матрица соединений автомата есть квадратная матрица C = [ cij ], строки которой соответствуют исходным состояниям, а столбцы – состояниям перехода. В случае F –автомата Мили элемент cij = xk / ys, стоящий на пересечении i -ой строки и j -го столбца, соответствует входному сигналу xk, вызвавшему переход из состояния zi в состояние zj, и выходному сигналу ys, выдаваемому при этом переходе. Для автомата Мили, рассмотренного выше, матрица соединений имеет вид
. (3.34)
Если переход из состояния zi в состояние zj происходит под действием нескольких сигналов, элемент матрицы cij представляет собой множество пар «вход-выход» для этого перехода, соединённых знаком дизъюнкции. Для F –автомата Мура элемент cij = xk / ys равен множеству входных сигналов на переходе (zi, zj), а выход описывается вектором выходов, i -я компонента которого – выходной сигнал, отмечающий состояние zi. Для автомата Мура, рассмотренного выше, матрица соединений и вектор выходов имеют вид
; . (3.35)
Для детерминированных автоматов выполняется условие однозначности переходов: автомат, находящийся в некотором состоянии, под действием любого входного сигнала не может перейти более чем в одно состояние. Это означает, что в графе автомата из любой вершины не могут выходить две и более дуг, отмеченных одним и тем же входным сигналом, а в матрице соединений в каждой строке входной сигнал не должен встречаться более одного раза. Рассмотрим таблицу переходов и граф асинхронного конечного автомата. Для F –автомата состояние zk называется устойчивым, если для любого входа xi Î X, для которого φ (zk, xi) = zk имеет место ψ (zk, xi) = yk. Таким образом, F –автомат называется асинхронным, если каждое его состояние zk Î Z устойчиво. Ниже приведён пример асинхронного автомата Мура, заданного таблично (табл.3.5) и графически (рис.3.37).
Дата добавления: 2014-11-20; Просмотров: 514; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |