Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Индексирование




Кластеризация

 

Нельзя завершить этот краткий обзор без упоминания технологии кластеризации данных. В ее основе лежит принцип как можно более близкого физического размещения на диске логически связанных между собой и часто используемых данных. Физическая кластеризация данных – чрезвычайно важное условие высокой производительности, что можно продемонстрировать следующим примером. Допустим, что наиболее часто используется хранимая запись r1 страницы p1, для работы с которой также требуется вызывать хранимую запись r2 страницы p2. Тогда возможно возникновение следующих ситуаций:

1. Если страницы р1 и р2 совпадают, то для доступа к записи r2 не потребуется выполнять еще одну физическую операцию ввода-вывода, поскольку нужная страница уже будет находиться в оперативной памяти.

2. Если страницы р1 и р2 не совпадают, но физически размещаются достаточно близко, например смежные страницы, то для доступа к записи r2 потребуется выполнить еще одну физическую операцию ввода-вывода (если, конечно, страница p2 еще не находится в оперативной памяти). Однако, поскольку головка чтения/записи уже будет находиться в непосредственной близости от нужного положения, время поиска будет очень малым. А если страницы р1 и р2 находятся на одном цилиндре, время поиска вообще будет равно нулю.

Внутрифайловую и межфайловую кластеризацию СУБД может осуществлять, размещая логически связанные записи на одной странице (если это возможно) или на смежных страницах (в противном случае).

Кластеризация внутри СУБД возможна только в том случае, если администратор базы данных организует ее. В совершенных СУБД часто предусмотрено задание нескольких различных типов кластеризации данных из разных файлов.

Рассмотрим в качестве примера таблицу с данными о студентах, а также часто используемый и потому очень важный запрос типа "Найти всех студентов учащихся в группе X", где X – некий параметр. При таких условиях администратор базы данных может выбрать способ сохранения данных, схематически показанный на рис. 13.2. Он основан на двух хранимых файлах: файле с данными о студентах и файле с данными о группах; файлы могут размещаться в различных наборах страниц. Предполагается, что в файле групп используется упорядочение по алфавитному перечню их названий, т.е. по ключевому полю GrName (название группы) с указателями на соответствующие записи в файле поставщиков.

 

рис. 13.2 Индексирование файла поставщиков по полю CITY файла городов.

 

Для поиска всех студентов из группы Б-99-51 можно применить следующую стратегию: найти в файле групп группу Б-99-51, а затем согласно указателям извлечь все соответствующие записи из файла студентов.

Такая стратегия будет более эффективной по сравнению с поиском в файле с данными студентов, поскольку, СУБД известна физическая последовательность записей в файле групп (поиск будет прекращен после извлечения следующей за Б-98-51 названия группы в алфавитном порядке). Кроме того, даже если придется просмотреть файл групп полностью, для такого поиска потребуется гораздо меньше операций ввода-вывода, поскольку физический размер файла групп меньше, чем размер файла с данными студентов из-за меньшего размера записей.

В рассматриваемом примере файл групп называется индексным файлом или индексом по отношению к файлу студентов, и наоборот, файл студентов индексирован (называется индексированным файлом) по отношению к файлу групп.

Индексный файл – это хранимый файл особого типа, в котором каждая запись состоит из двух значений, а именно данных и указателя. Данные соответствуют некоторому полю (индексному полю) из индексированного файла, а указатель служит для связывания с соответствующей записью индексированного файла. Индексное поле также называется индексным ключом (index key).

Индекс можно сравнить с предметным указателем обычной книги, который состоит из списка слов с "указателями" (номерами страниц) для упрощения поиска связанной с этими словами информации из "индексированного файла" (т.е. из содержимого книги).

Основным преимуществом использования индексов является значительное ускорение процесса выборки или извлечения данных, а основным недостатком – замедление процесса обновления данных, поскольку при каждом добавлении новой записи в индексированный файл потребуется также добавить новый индекс в индексный файл.

Хранимый файл может иметь несколько индексов, которые могут как раздельно, так и совместно использоваться для более эффективного доступа к записям о поставщиках.

Индексы часто называют инвертированными списками. Дело в том, что если файл студентов (см. рис. 13.2) имеет традиционную структуру списка набора значений полей для каждой записи, то индекс содержит список набора записей для каждого значения индексированного поля.

Индекс можно также создать на основе комбинации двух или более полей. Например, на рис. 13.3 показана схема индексирования файла студентов на основе комбинации полей GrName и City. При такой организации в СУБД можно выполнить запрос типа "Найти студентов учащихся в группе Б-98-51 проживающих в г. Кривой Рог" на основе однократного просмотра с помощью одного индекса.

 

 

рис. 13.3 Индексирование файла поставщиков на основе комбинации полей GrName и City

 

Обратите внимание, что комбинированный индекс GrName/City может также служить индексом по одному полю GrName, поскольку все записи в комбинированном индексе расположены последовательно.

 




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 467; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.