Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Химический состав нефти и газа




Образование основных классов углеводородов нети

В нефти присутствуют углеводороды, образующиеся на различных этапах геохимической истории органического вещества. Первым источником углеводородов является их биосинтез в живом веществе организмов. Вторым источником нефтяных углеводородов является процесс микробиальной переработки исходного органического вещества, протекающий на стадии диагенеза осадков. Направленность процесса определяется различной устойчивостью биомолекул к микробиальному ферментативному разрушению в осадке и геохимическими условиями среды (Eh, рН). Биомолекулы отмершего вещества организмов превращаются в осадке в более устойчивые в данных условиях соединения, частично — с образованием углеводородов. В углеводороды могут превращаться спирты и альдегиды; возможно пре­вращение циклических терпеноидов в цикланы и арены. Третьим и, как теперь стало ясно, основным источником углеводородов является образование преимущественно из липидных компонентов органического вещества при его термической (или термокаталитической) деструкции при 90—160°С во время проявления главной фазы нефтеобразования.

На состав углеводородов нефти влияет ряд факторов:

- особенности исходного органического вещества осадков;

- геохимические условия (Eh, pH) при преобразовании органического вещества в осадках;

- степень катагенетического (термического) превращения исходного для нефти органического вещества в зоне повышенных температур;

- вторичные изменения нефти в процессе образования залежей и при их существовании в течение длительного геологического времени (физическая дифференциация углеводородов в процессе миграции, длительное воздействие повы­шенной температуры, окислительные процессы в залежах и т. п.).

Состав углеводородов конкретной нефти формируется под воздействием многих причин, и не всегда легко выделить из них основную.

Алканы. Для высокомолекулярных н-алканов нефти возможны три основных источника образования: н-алканы, синтезируемые в живых организмах; высокомолекулярные алифатические одноатомные спирты, входящие в состав восков живого вещества, и высшие одноосновные предельные жирные кислоты.

Неомыляемая фракция растительных или животных жиров составляет обычно десятые доли процента и состоит из углеводородов и спиртов. По структуре и происхождению эти углеводороды, видимо, связаны с соответствующими жирными кислотами, которым они сопутствуют в виде примеси. Часть из них принадлежит к к-алканам, другая — к изопреноидным.

В живом веществе широко распространены н-алканы СН3(СН2)nСНз с нечетным числом атомов углерода. Часть высокомолекулярных н-лканов биосинтетического происхождения непосредственно наследуется нефтью от исходного органическо­го вещества осадков. В зависимости от исходного органического вещества они имеют некоторую специфику. В хемосинтезирующих бактериях обнаружены н-алканы C12— C31 примерно одинаковым числом четных и нечетных атомов углерода; в фотосинтезирующих бактериях — н-алканы С14— С29. В сине-зеленых водорослях присутствуют н-алканы C15 — С20, причем более 80 % в них приходится на углеводороды С17 и более высокомолекулярные; коэффициент нечетности — в пределах 1—5. Для высших растений характерны н-алканы более высокомолекулярные— С23 — C35 с преобладанием C25, С27 и С29 при массовом отношении нечетных углеводородов к четным более 10. Эти особенности углеводородов проявляются нередко и в нефтях, связанных с образованием из морского планктоногенного органического вещества или из керогена, в котором большую роль играли остатки высшей наземной растительности. Некоторое количество н-алканов образуется при фермента­тивном биохимическом превращении жирных кислот, спиртов и альдегидов на стадии диагенеза осадков. Однако значительно большее их количество образуется при повышенной температуре (100—150°С) во время проявления главной фазы нефтеоб-разования, в основном, вследствие декарбоксилирования высших одноосновных предельных жирных кислот по схеме:

 

R—СООН —> CO2 +.RH.

 

Образующийся углеводород содержит на один атом углерода меньше, чем исходная кислота. А поскольку в живом веществе распространены в основном "четные" жирные кислоты (например, олеиновая С18Н34О2, стеариновая C18H36О2), то в образующихся н-алканах преобладают "нечетные" углеводороды, в данном случае — С17Н36.

Другой важный механизм образования н-алканов связан с превращением высших жирных кислот в алифатические кетоны с удвоением углеродной цепи и последующим их восстановлением в углеводороды. А. И. Богомолов осуществил, например, реакцию превращения стеарона и пальмитона в н-пентатриаконтан (С35Н72) и гентриаконтан (C31H64) по схеме:

С17Н35—СО— С17Н35 + 4[Н] ——> С17Н35—СН2— С17Н35, —Н2О

в присутствии глины как катализатора, без внешнего источника водорода, только в результате реакций перераспределения водорода, находящегося в системе реагирующих веществ. Выход н-алканов при 200°С составлял около 30 %, а н-гентриаконтана 27 %.

Источниками образования н-алканов могут быть также спирты, ненасыщенные жирные кислоты и, возможно, аминокислоты.

Одним из источников разветвленных алканов являются биосинтетические углеводороды, среди которых в живом веществе широко распространены 2-метилалканы СН3СН(СН2)nСН3 и 3-метилалканы СН3СН2СН(СН2)nСНз

СНз СН3

с преобладанием нечетного числа атомов углерода. Значительное количество разветвленных алканов образуется во время проявления главной фазы нефтеобразования при интенсивной термической деструкции липидов. В этих реакциях образуются как насыщенные, так и ненасыщенные углеводороды. Образующиеся алканы, по мнению А. И. Богомолова, претерпевают при каталитическом воздействии ряд превращений, дающих начало разветвленным алканам. Они могут образовываться также вследствие отрыва алкильных радикалов от углеводородов стероидного строения.

Специфической группой разветвленных алканов являются свойственные нефтям углеводороды С10— С40 с регулярным чередованием метальных групп — так называемые изопреноидные алканы (изопренаны). Их источником в некоторой степени являются непосредственно биосинтетические изопреноидные углеводороды, содержащиеся в эфирных маслах живого вещества, но главным образом — имеющие изопреноидную структуру их кислородные производные: спирты, альдегиды, кетоны, сложные эфиры, карбоновые кислоты, входящие в молекулярную структуру органического вещества пород.

Изопреноидная структура лежит в основе всех терпеновых соединений, в том числе алифатических. Собственно терпенами являются соединения состава С10Н16, содержащие два изопреноидных звена; сочетание трех звеньев характерно для сескви-терпенов; дитерпены построены из четырех изопреноидных звеньев. Встречающиеся в живом веществе алифатические монотерпены представлены в основном мирценом и оцименом,

но чаще в природе встречаются кислородсодержащие производные монотерпенов, например, спирт гераниол, из которого при дегидратации может образоваться соответствующий изопреноидный углеводород. Дитерпены включают много соединений, характерных для живых организмов. К алифатическим дитерпенам относятся такие характерные для нефти изоалканы, как фитан (С20Н42) и пристав (C19H40), которые образуются из входящего в состав хлорофилла всех зеленых растений непредельного спирта фитола (С2оН39ОН).

Изоалкан пристан встречается и непосредственно в телах многих морских животных.

Предполагается, что первая стадия образования изоалканов — дегидратация фитола с образованием фитадиена. Затем при диспропорционировании водорода и насыщении диена происходит образование фитана. Одновременно протекают и другие реакции, связанные с деструкцией углеродной цепи и образованием изопреноидных углеводородов с меньшим числом атомов углерода.

Циклоалканы. Циклоалканы (нафтены) — очень характерный для природных нефтей класс углеводородов, который был впервые открыт в нефти В. В. Марковниковым. Их содержание в нефти составляет от 25 до 75 %.

Источником циклоалканов в нефти в незначительной степени могут быть непосредственно некоторые биосинтетические углеводороды живого вещества, такие, как моноциклические лимонен, а-пинен, камфен, полициклические углеводороды типа β-каротина:

Однако более важным источником циклоалканов в нефти являются широко распространенные в живом веществе организмов кислородсодержащие производные различных циклических терпенов (монотерпенов (CloH16), сесквитерпенов (C15H24), дитерпенов (С20Н32), тритерпенов (СзоН48) и тетратерпенов (С40Н64)) с функциями спиртов, кетонов и кислот.

Образование циклоалканов из них происходило в результате потери функциональных кислородных групп и реакций диспропорционирования водорода при почти полном сохранении основы молекулярной структуры исходных терпеноидов живого вещества. Образующиеся в результате этих процессов различные циклоалканы, например, стераны и гопаны, уже упоминались при рассмотрении «химических ископаемых» или "биомаркеров", свидетельствующих об органическом происхождении нефти.

Из циклического спирта холестерина образуется, например, углеводород хо лестан:

По такой же схеме образовывались и другие цикланы — стерины и тритерпены (С27 — С35) из стероидов, присутствующих в живом веществе в свободном виде или в виде эфиров жирных кислот.

Другой, более значительный по масштабам источник образования циклоалканов связан с дегидратационной циклизацией непредельных жирных кислот с образованием насыщенных циклических углеводородов.

Из образующихся циклоалкенов при дальнейших превращениях получаются нафтеновые и нафтеново-ароматические углеводороды.

Возможность такого механизма образования циклоалканов изучена А. И. Богомоловым экспериментально при нагревании олеиновой кислоты до 200°С с алюмосиликатным катализатором. При этом были получены углеводороды от С5 до С40 различных классов — алифатические, алициклические и ароматические. Среди образовавшихся циклоалканов преобладали изомеры с пяти- и шестичленными кольцами и мостикового типа, как в обычных природных нефтях. Были обнаружены также би- и трициклические циклоалканы.

Арены. Для живого вещества организмов ароматические структуры нехарактерны, в то время как в нефтях содержание ароматических углеводородов составляет 10—20, а иногда и до 35 %.

В живом веществе ароматические структуры содержатся в лигнине (производные гидроксифенилпропана), некоторых аминокислотах, а также гидрохинонах (витамины Е, К) в виде отдельных ароматических колец. Их доля в исходном для нефти веществе организмов очень мала, поэтому образование аренов в сапропелевом органическом веществе осадков, пород и в нефтях следует связывать главным образом с вторичными процессами преобразования органического вещества, происходящими в осадках на стадиях диагенеза и особенно катагенеза в зоне повышенных температур.

Частично арены образуются сразу же после отмирания организмов в свежих илах вследствие преобразования полиеновых соединений типа каротиноидов, из стероидных соединений, бензохинонов, а также гидрохинонов и нафтохинонов, в структуре которых имеются ароматические ядра:

 

 

В экспериментах А. И. Богомолова по термокатализу непредельных жирных кислот и термическому разложению органического вещества сапропелевых сланцев при 200°С отмечалось образование смеси углеводородов, в которой арены составляли от 15 до 40 %, причем они были представлены всеми типами ареновых структур, характерных для природных нефтей.

При превращении непредельных жирных кислот в присутствии глины как катализатора образуются сначала предельные пятичленные и шестичленные кетоны и неконденсированные нафтены. Дальнейшее превращение предельных циклических кетонов идет по реакции дегидрационной конденсации, для циклогексанона, например, следующим образом:

 

При этом образуется додекагидротрифенилен — гибридный углеводород нафтеново-ароматической структуры.

Рассмотренные материалы свидетельствуют о том, что образование всех основных классов углеводородов природных нефтей частично обусловлено процессом биосинтеза углеводородов в живом веществе, но главным образом — термическим или термокаталитическим превращением липидного материала биогенного сапропелевого органического вещества осадочных пород в зоне катагенеза при проявлении главной фазы нефтеобразования.

 

Знание химического состава природных нефтяных систем служит отправной точкой для прогнозирования их фазового состояния и свойств фаз при различных термобарических условиях, соответствующих процессам добычи, транспортировки и переработки нефтяных смесей. Тип смеси - нефть, газоконденсат или газ - также зависит от ее химического состава и сочетания термобарических условий в залежи. Химический состав определяет возможное состояние компонентов нефтяных систем при данных условиях - молекулярное или дисперсное.

Петров Ал. А., написавший серию хорошо известных специалистам монографий, посвященных химическому составу нефтей, утверждает, что в нефтях идентифицировано до 1000 индивидуальных углеводородов состава С140.

Нефтяные системы отличаются многообразием компонентов, способных находиться в молекулярном или дисперсном состоянии в зависимости от внешних условий. Среди них встречаются наиболее и наименее склонные к различного рода межмолекулярным взаимодействиям (ММВ), что в итоге обусловливает ассоциативные явления и исходную дисперсность нефтяных систем при нормальных условиях.

Химический состав для нефти различают как элементный и вещественный.

Основными элементами состава нефти являются углерод (83,5-87 %) и водород (11,5-14 %). Кроме того, в нефти присутствуют:

сера в количестве от 0,1 до 1-2 % (иногда ее содержание может доходить до 5-7 %, во многих нефтях серы практически нет);

азот в количестве от 0,001 до 1 (иногда до 1,7 %);

кислород (встречается не в чистом виде, а в различных соединениях) в количестве от 0,01 до 1 % и более, но не превышает 3,6 %.

Из других элементов в нефти присутствуют - железо, магний, алюминий, медь, олово, натрий, кобальт, хром, германий, ванадий, никель, ртуть, золото и другие. Однако, содержание их менее 1 %.

В вещественном плане нефть в основном состоит из углеводородов и гетероорганических соединений. Среди последних основное внимание следует обратить на смолоасфальтеновые вещества (CAB), которые можно рассматривать как концентрат наиболее склонных к межмолекулярным взаимодействиям соединений.

 




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 818; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.