КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Прогнозирование на основе экстраполяции тренда
Наиболее распространенным методом прогнозирования выступает экстраполяция тренда. При этом, для выхода за границы исследуемого периода достаточно продолжить значения независимой переменной – времени. При таком подходе к прогнозированию предполагается, что размер уровня, характеризующего явление, формируется под воздействием множества факторов, причем не представляется возможным выделить порознь их влияние. В связи с этим ход развития связывается не с какими-либо конкретными факторами, а с течением времени, то есть: = f (t), (3.15)
Экстраполяция дает возможность получить точечное значение прогноза. Точечный прогноз есть оценка прогнозируемого показателя в точке (в конкретном году, месяце, дне) по уравнению, описывающему тенденцию показателя. Точечная оценка рассчитывается путем подстановки номера года t, на который рассчитывается прогноз, в уравнение тренда. Она является средней оценкой для прогнозируемого интервала времени. Величина доверительного интервала определяется следующим образом:
, (3.16) где: – средняя квадратическая ошибка тренда; – расчетное прогнозное значение уровня; – доверительное значение критерия Стьюдента. Метод прогнозирования на основе экстраполяции тренда базируется на следующих предпосылках: · исходный временной ряд должен описываться плавной кривой; · общие условия, определяющие тенденцию развития изучаемого явления в прошлом и настоящем не должны претерпевать значительных изменений в будущем; · исходный ряд динамики должен иметь достаточное число уровней, с тем, чтобы отчетливо проявилась тенденция. Трендовые модели выражаются различными функциями , на основе которых строятся модели прогноза и осуществляется их оценка. На практике наибольшее распространение получили следующие виды трендовых моделей:
· линейная ; · параболы различных степеней:
2-го порядка ; 3-го порядка (кубическая) и т.д. · степенная: показательная: , (3.17) · логарифмическая: . При этом наиболее существенным вопросом прогнозирования по трендовым моделям является проблема точного прогноза. Точная оценка прогноза весьма условна в силу следующих причин: · Выбранная для прогнозирования функция дает лишь приближенную оценку тенденции, так как она не является единственно возможной. · Статистическое прогнозирование осуществляется на основе ограниченного объема информации, что, в свою очередь, сказывается на величине доверительных интервалов прогноза. · Наличие в исходном временном ряду случайного компонента приводит к тому, что любой прогноз осуществляется лишь с определенной долей вероятности. Рассматривая получение интервальных или точечных оценок прогноза следует учитывать, что в отдельных случаях получение более точных оценок не гарантирует надежности прогноза. Применение трендовых моделей прогнозирования социально-экономических явлений имеет большую значимость и, несмотря на определенную простоту их реализации, часто используются для прогнозирования сложных социально-эконо-мических явлений. Прогнозирование методом экстраполяции тренда основывается на анализе тенденций развития одномерных временных рядов социально-экономических явлений и процессов.
Дата добавления: 2014-12-08; Просмотров: 876; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |