Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение. Деревянная стойка длиной l = 4 м квадратного поперечного сечения сжимается силой F =




Условие задачи

Пример 2

  Рис. 6.5. Сжатый стержень квадратного поперечного сечения  

Деревянная стойка длиной l = 4 м квадратного поперечного сечения сжимается силой F = 100 кН (рис. 6.5). Требуется подобрать размер стороны квадрата а так, чтобы выполнялись условия устойчивости и прочности и расход материала был минимальным. Ослабления составляют 15 % площади сечения. Примем допускаемое напряжение на сжатие для дерева

Поскольку размеры сечения могут быть любыми, используем метод последовательных приближений. Выполним первое приближение. Примем . Из условия устойчивости (6.6) найдем площадь сечения, подставив :

.

Поскольку , то . Найдем минимальный радиус инерции сечения. Для квадрата любая ось является главной и радиус инерции относительно любой оси

.

Зная радиус инерции, вычислим гибкость стержня по формуле (6.1):

.

По таблице находим для дерева . Полученное значение еще сильно отличатся от величины , принятой в начале первого приближения, поэтому выполним второе приближение. Найдем как среднее арифметическое между и :

и повторим все действия, выполненные в первом приближении:

Этой гибкости соответствует . Выполним еще одно, третье, приближение:

Соответствующее этой гибкости значение отличается от на 1,2 %. Такая точность достаточна, поэтому примем . Для этого размера в условии устойчивости

достигнуто желаемое равенство.

В заключение проверим условие прочности, считая .

.

6.3. РАСЧЕТ ГИБКОГО СЖАТО-ИЗОГНУТОГО СТЕРЖНЯ (ЗАДАЧА № 36)




Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 729; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.