КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Запасы воды в гидросфере Земли
Из приведенных данных видно, что запасы соленой воды колоссальны, а пресной воды очень малы и составляют лишь около 3% общего объема вод суши. Кроме того, значительная часть пресной воды практически не используется из-за своей недоступности - воды ледников и основной части подземных вод. В настоящее время объем пригодных для использования пресных вод составляет 0,3% общего запаса гидросферы (примерно 4 млн. км3). Вода в атмосфере - это главным образом водяной пар и его конденсат (капельки воды и ледяные кристаллы). Биологическая вода - это вода, содержащаяся в живых организмах и растениях, в которых в среднем ее находится 80%. Общая масса живого вещества биосферы около 1400 млрд. тонн, соответственно масса биологической воды составляет 1120 млрд. тонн, или 1120 км3. Вода - это единственное вещество на Земле, существующее в природе во всех трех агрегатных состояниях: жидком, твердом и газообразном. Под действием солнечного тепла вода испаряется из естественных водоемов и водотоков - океанов, морей, рек, а также почвы. Водяной пар, будучи легче воздуха, поднимается в верхние слои атмосферы и конденсируется в мельчайшие капельки, образуя облака. Из облаков вода возвращается на земную поверхность в виде атмосферных осадков - дождей и снега. Выпадающая вода поступает непосредственно в водные объекты, а также собирается в верхних слоях почвы, образуя поверхностные и грунтовые воды, которые, соприкасаясь с минеральными и органическими веществами, частично растворяют их, формируя химический состав природных вод. «Парниковый эффект», приводящий к нарушению теплового баланса Земли, способен повысить температуру земной поверхности. Любая человеческая деятельность, которая способствует парниковому эффекту и происходящим изменениям климата, по-видимому, влияет и на глобальный круговорот воды. Предполагаемое повышение уровня моря не только создает проблему защиты прибрежных районов от затопления, но может привести к загрязнению водных ресурсов (при затоплении химических производств, складов ядовитых веществ, свалок токсических отходов и т.д.), а также увеличению доли соленой воды по отношению к пресной воде. В результате потепления климата и увеличения испарений осадки могут возрасти на 15%. При повышении температуры на 2-4оС в глобальном масштабе возможно таяние льда и повышение уровня Мирового океана примерно на 20 м с последующими непредсказуемыми экологическими последствиями. Огромную роль играет вода в живых организмах. Обмен веществ без нее невозможен; почти все химические, физиологические и коллоидные процессы в организме (ассимиляция, диссимиляция, диффузия, ресорбция, осмос и др.) протекают в водных растворах или при обязательном участии воды. Исключительные свойства воды в общей биологической системе Земли связаны с ее физическими и химическими свойствами. Вода (Н2О) - простейшее устойчивое химическое соединение водорода с кислородом. При обычных условиях это жидкость без запаха, вкуса и цвета. По шкале Цельсия температура плавления воды принята за 0оС, а температура кипения - за 100оС. Температура кипения воды является аномальной и в то же время наиболее важной, так как именно поэтому стало возможным существование на Земле воды в жидкой фазе. С другой стороны, существование воды в чистом виде обусловлено и высокой температурой замерзания, что обеспечивает вымерзание примесей. Высокая теплоемкость воды способствовала тому, что Мировой океан стал регулятором климата, перераспределяя тепло по поверхности Земли. Наибольшую плотность вода имеет при 4оС (1г/см3), при 0оС плотность льда 916,8 кг/м3, а плотность воды - 999,968 кг/м3. Такая зависимость плотности воды от температуры позволяет сохраниться в холодные периоды всей водной биосфере. При температурах до 4оС плотность льда становится меньше плотности воды и лед всплывает. При дальнейшем охлаждении происходит перемешивание более плотной холодной воды и менее плотной теплой до тех пор пока вся вода не достигнет 4оС. Поверхностный слой становится легче глубинных слоев, и перемешивание воды прекращается, что приводит к образованию на поверхности воды льда, служащего тепловым барьером, защищающим гидросферу от переохлаждения. Вода обладает способностью растворять очень многие вещества, имеет высокую диэлектрическую постоянную, способна к самопроизвольной электролитической диссоциации с образованием ионов: H2O Ы H+ + OH-. Эти свойства воды позволяют из любой природной системы получить водный раствор электролита, в котором возможно протекание многих процессов, невозможных в безводной среде. Многие вещества вступают с водой в реакцию обменного разложения, называемую гидролизом. Изменение физических свойств водных растворов почти линейно зависит от концентрации растворенных в ней солей. С ростом населения Земли и увеличением выпуска промышленной и сельскохозяйственной продукции потребление воды возрастает. По оценкам Института мировых ресурсов, около 9000 км3 пресной воды доступно для человеческой деятельности. Этот запас воды достаточен, чтобы обеспечить 20 млрд. человек в год. По оценкам специалистов, безвозвратное водопотребление составляет 150 км3 в год (около 1% устойчивого стока пресных вод). В среднем городское водопотребление оценивается в 450 л/сутки на одного человека. Из них 50% идет на хозяйственно-питьевые, 20% на коммунально-бытовые и 30% на производственные нужды. Главным потребителем воды является сельское хозяйство, на долю которого приходится около 70% всех запасов пресной воды. Велика потребность в воде и промышленности, где она используется для приготовления и очистки растворов, охлаждения и нагревания, транспортировки сырья, теплоэнергетических целей, удаления отходов, мытья оборудования, тары, помещений и т.д. Средний химический комбинат ежесуточно расходует 1 - 2 млн. м3 воды, теплоэлектростанция - 300 км3 в год. Качество воды - это сочетание химического и биологического состава и физических свойств воды, определяющее ее пригодность для конкретных видов водопользования, в зависимости от назначения воды и особенностей технологического процесса. Требования к качеству всех видов вод, кроме сточных, устанавливаются отечественными государственными стандартами (ГОСТами). Термины и определения даны в ГОСТе 27065-86. Существует несколько различных классификаций вод. В зависимости от водопользования воды могут быть питьевые, речные, озерные, артезианские, морские, сточные, смешанные и илы. Питьевая вода - это вода, в которой бактериологические, органолептические показатели и показатели токсичных химических веществ находятся в пределах норм питьевого водоснабжения (отсутствие запаха, вкуса, цвета, минерализация не более 1 г/л, жесткость не должна превышать 7,0 ммоль/л, рН в пределах 6,5-9,5, концентрация нитрат-иона не более 45-50 мг/л, коли-индекс не более 3, коли-титр не менее 300). Состав речных и озерных вод зависит от ряда особенностей, к которым относятся скорость течения, геологические особенности местности, климатические и погодные условия, интенсивность воздействия на ионный и газовый состав биологических процессов и хозяйственной деятельности человека. Состав артезианских вод зависит от зональности - от пресных гидрокарбонатных в верхней части до высокоминерализованных хлоридных в глубоких частях бассейна. Под смешанными водами подразумеваются дождевая, колодезная, кипяченая вода и вода из устьев рек (солоноватая). Другая классификация подразделяет все воды на морские, поверхностные, подземные и осадки. Классификации природных вод по химическому составу основываются на самых различных признаках: минерализации, концентрации преобладающего компонента или групп их, соотношении между концентрациями разных ионов, наличии повышенных концентраций каких-либо специфических компонентов газового (СО2, Н2S, CH4 и др.) или минерального (F, Ra и др.) состава. Известны попытки классифицировать природные воды в соответствии с общими условиями, в которых формируется их химический состав, а также по гидрохимическому режиму водных объектов. К наиболее известным классификациям относятся классификации С.А.Щукарева, Н.И.Толстихина, В.А.Сулина, О.А.Алекина. Для минеральных вод ранее применяли классификацию В.А.Александрова, в настоящее время - В.В.Иванова и Г.А.Невраева; для рассолов используется классификация М.Г.Валяшко. Для поверхностных вод наиболее часто применяется классификация О.А.Алекина, сочетающая принцип деления химического состава воды по преобладающим ионам с делением по количественному соотношению между ними. По преобладающему аниону природные воды делятся на три класса: 1) гидрокарбонатные и карбонатные (большинство маломинерализованных вод рек, озер, водохранилищ и некоторые подземные воды); 2) сульфатные воды (промежуточные между гидрокарбонатными и хлоридными водами, генетически связаны с различными осадочными породами); 3) хлоридные воды (высокоминерализованные воды океана, морей, соленых озер, подземные воды закрытых структур и т.д.). Каждый класс по преобладающему катиону подразделяется на три группы: кальциевую, магниевую и натриевую. Каждая группа в свою очередь подразделяется на четыре типа вод, определяемых соотношением между содержанием ионов в процентах в пересчете на количество вещества эквивалента: I. HCO3- > Ca2+ + Mg2+. II. HCO3- < Ca2+ + Mg2+ < HCO3- + SO2-4. III. HCO3- + SO2-4 < Ca2+ + Mg2+ или Cl- > Na+. IV. HCO3- = 0. Воды I типа образуются в процессе химического выщелачивания изверженных пород или при обменных процессах ионов кальция и магния на ионы натрия и являются маломинерализованными. Воды II типа смешанные, к ним относятся воды большинства озер, рек и подземные воды с малой и умеренной минерализацией. Воды III типа метаморфизированные, включают часть сильноминерализованных природных вод или вод, подвергшихся катионному обмену ионов натрия на ионы кальция и магния. К этому типу относятся воды морей, океанов, морских лиманов, реликтовых водоемов. К IV типу относятся кислые воды - болотные, шахтные, вулканические или воды сильно загрязненные промышленными стоками. Выделяют несколько классификаций природных вод по минерализации. Округляя различные пределы значений, О.А.Алекин наметил следующее деление природных вод по минерализации: 1) рассолы (соленость > 50‰); 2) морские (соленость 25 - 30‰); 3) солоноватые (соленость 1 - 25‰); 4) пресные (соленость до 1‰). Загрязнение гидросферы происходит с нарастающей скоростью. При прохождении через гидрологический цикл вода загрязняется взвешенными и растворенными веществами - как природными компонентами, так и отходами человеческой деятельности. Источники загрязнения вод делятся на четыре большие группы. 1. Производственные или промышленные сточные воды, использованные в технологическом процессе производства или получающиеся при добыче полезных ископаемых. 2. Городские сточные воды, включающие преимущественно бытовые стоки. 3. Атмосферные воды - дождевые и от таяния снега, несущие массы вымываемых из воздуха поллютантов (загрязнителей) промышленного происхождения. 4. Сточные воды сельскохозяйственных предприятий, включающие канализационные воды и смывы с полей удобрений и пестицидов. Количество загрязненных сточных вод, сбрасываемых в озера, реки и моря, во всем мире достигает 250 - 300 млрд. м3 в год. Четкая классификация промышленных стоков затруднена из-за разнообразия загрязнений в них. Различают две основные группы сточных вод: 1) содержащие органические вещества; 2) содержащие неорганические примеси. К первой группе относятся сточные воды нефтеперерабатывающих и нефтехимических заводов, предприятий органического синтеза и синтетического каучука, коксохимических, газосланцевых и др. Они содержат нефть и нефтепродукты, нафтеновые кислоты, углеводороды, спирты, альдегиды, кетоны, поверхностно-активные вещества, фенолы, смолы, аммиак, меркаптаны, сероводород и др. Ко второй группе относятся сточные воды содовых, сернокислотных, азотнотуковых заводов, обогатительных фабрик свинцовых, цинковых, никелевых руд, шахт, рудников, катализаторных фабрик, металлургических предприятий, гальванических производств и др. Они содержат кислоты, щелочи, соли, сернистые соединения, ионы тяжелых металлов, взвешенные минеральные вещества и др. Промышленные сточные воды классифицируют также по дисперсионному составу загрязняющего вещества. В соотвестствии с этой классификацией выделяют четыре группы сточных вод: - содержащие нерастворимые в воде примеси с величиной частиц более 10-5 - 10-4 м; - представляющие собой коллоидные растворы; - содержащие растворенные газы и молекулярно-растворимые вещества; - содержащие вещества, диссоциирующие на ионы. Такая классификация позволяет предложить для каждой группы определенные методы очистки сточных вод. Поступающие в реки, озера, водохранилища и моря загрязняющие вещества вносят значительные изменения в установившийся режим и нарушают равновесное состояние водных экологических систем, хотя водоемы и способны к самоочищению путем биохимического распада органических веществ под действием микроорганизмов. Самоочищающая способность зависит от запаса растворенного кислорода, гидродинамических и биохимических процессов, солнечной радиации, жизнедеятельности растительных и животных организмов и др. Эти процессы интенсифицируются летом, замедляются зимой и зависят от кратности разбавления сточных вод. Для нормального протекания процесса самоочищения прежде всего необходимо наличие в водоеме запаса растворенного кислорода. Насыщенность им воды требуется для окислительного разложения большинства примесей. Химическое или бактериальное окисление органических веществ приводит к снижению концентрации растворенного в воде кислорода (в 1 литре воды содержится всего 8-9 мл растворенного кислорода, в 1 литре воздуха - 210 мл кислорода). Влияние дезоксигенизирующих (снижающих содержание кислорода) агентов выражается в замене нормальной флоры и фауны водоемов примитивной, приспособленной к существованию в анаэробных условиях. Органические вещества, взаимодействуя с растворенным кислородом, окисляются до углекислого газа и воды, потребляя различное количество кислорода. Поэтому введен обобщенный показатель, позволяющий оценить суммарное количество загрязнений в воде по поглощению кислорода. Таким показателем является биохимическое потребление кислорода (БПК), равное количеству кислорода, поглощаемого при окислении конкретного вещества в определенный отрезок времени. БПК выражается в миллиграммах потребного кислорода на 1 грамм окисляемого вещества (мг О2 / г), а в растворах - в миллиграммах потребного кислорода на 1 литр раствора (мг О2 / г). Наряду с БПК установлен показатель химического (бихроматного) потребления кислорода (ХПК) - количество кислорода, потребляемого при химическом окислении содержащихся в воде органических и минеральных веществ под действием окислителей; выражается в мг/л атомарного кислорода. В зависимости от времени, за которое определяется БПК, различают БПК5 (пятисуточное), БПК20 (двадцатисуточное), БПКполн. (полное, когда окисление заканчивается). По нормам БПКполн. не должно превышать в водоемах рыбохозяйственного значения (I категории) 3 мг О2 / л, остальных категорий - 6 мг О2 / л. БПК промышленных стоков в зависимости от производства и состава стоков составляет 200 - 3000 мг О2 / л. Это значит, что при сбросе таких стоков содержание кислорода в водоеме значительно уменьшается, либо он употребляется полностью. Это вызывает гибель планктона, бентоса, рыбы и других организмов, живущих в водоеме и нуждающихся в кислороде. Одновременно усиленно развиваются анаэробные микроорганизмы, биологическое равновесие нарушается, возникает загнивание водоема. Следовательно, необходима очистка стоков до такой степени, чтобы при сбросе их в водоемы и смешении с водой водоема БПК соответствовало норме, установленной санитарными правилами. По международному соглашению для сохранения водной фауны требуется содержание растворенного кислорода не ниже 5 мг О2/л. Одним из важнейших показателей способности водоема к самоочищению является соотношение форм азота. Резервуаром азота в биосфере является атмосфера. В результате ряда превращений он переходит в форму, участвующую в образовании аминокислот и протеинов. Рассмотрим динамику форм азота в водоеме. В природных водах содержание ионов аммония не превышает 0,1 мг/л, нитрит ионов - 0,001-0,01 мг/л и нитрат ионов - 0,01-0,5 мг/л. Это соотношение меняется по сезонам года: летом нитрат ионы составляют сотые доли мг/л, осенью и зимой - несколько десятых мг/л, что объясняется значительным употреблением нитратов растениями. В результате загрязнения водоемов хозяйственно-бытовыми стоками количество азота в воде по сравнению с природным его содержанием может возрастать в сотни и тысячи раз. Например, по данным профессора Н.С. Строганова, для водоемов, в которые поступали бытовые стоки, содержание азота аммонийных солей составляло примерно 84 мг/л. Превращение разных форм азота осуществляется в водоеме различными микроорганизмами. Указанные процессы четко прослеживаются на схеме, представленной на рис. 8.1.
Рис. 8.1. Превращение форм азота в водоеме (по М.М. Телитченко и К.А. Кокину) Аммиак накапливается в воде в процессе дезаминирования в результате протеолиза белков растительного и животного происхождения, осуществляемого гетеротрофными (аммонифицирующими) бактериями в аэробных и анаэробных условиях и вследствие автолиза клеток. Затем аммиак окисляется микроорганизмами до нитратов - основы питания растений. Этот процесс называется нитрификацией. Микроорганизмы нитрификаторы были открыты Виноградским в 1880 году. Процесс нитрификации протекает в две фазы в аэробных условиях и осуществляется двумя группами бактерий. Первая (р.Nitrosomonas) характеризуется способностью окислять аммиак до нитритов: NH3 + O2 + CO2 ® HNO2 + [CH2O] - органическое вещество. Вторая (р.Nitrobacter): HNO2 + O2 + CO2 ® HNO3 + [CH2O] - органическое вещество до нитратов. Энергия, выделенная при окислении аммиака и нитритов, используется нитрификаторами для ассимиляции углекислого газа и других процессов жизнедеятельности. Таким образом гнилостные бактерии и нитрификаторы осуществляют процесс самоочищения водоема. Все микроорганизмы, накапливающие азот, способствуют евтрофикации водоема, что бывает нежелательно для водопользователей. Евтрофикация - это повышение биопродуктивности водоема в результате накопления в воде биогенных веществ под воздействием природных и, главным образом, антропогенных факторов. В результате усиленного развития в водном объекте растений и микроорганизмов и затем их гибели ухудшаются физико-химические свойства воды: уменьшается ее прозрачность, вода приобретает зеленый или желто-бурый цвет, появляется неприятный вкус и запах, повышаются значения рН, в осадок выпадает карбонат кальция и гидроксид магния, наблюдается дефицит кислорода и возникают заморные явления. Восстановление нитратов в анаэробных условиях осуществляет в водоеме весьма неоднородная в физиологическом отношении группа микроорганизмов денитрификаторов. Однако общим для них является способность использования в анаэробных условиях нитрат-иона в качестве конечного акцептора электронов при окислении разных органических субстратов и молекулярного водорода:
[CH2O] + NO3- ® N2 + CO2; [CH2O] + NO3- ® NH3 + CO2. В процессе денитрификации нитраты восстанавливаются до аммиака или молекулярного азота. В водоемах, предназначенных для водопользования, это не страшно, в рыбохозяйственных - нежелательно, так как это обедняет их связанным азотом, доступным для растений и микроорганизмов. Процессу денитрификации препятствует наличие растворенного кислорода. По наличию в водоеме азота в той или иной форме можно судить о степени органического загрязнения вод и об интенсивности их самоочищения. Присутствие в воде ионов аммония и нитритов часто является признаком недавнего загрязнения, а нитрат ионов - признаком более раннего загрязнения воды. В отличие от азота круговорот фосфора является односторонней системой с движением из литосферы в гидросферу, а в ней - в осадки. Но при увеличении сброса фосфорсодержащих отходов воды становятся насыщенными по фосфатам и последствия этого явления до сих пор неясны из-за сложности определения скорости гидролиза конденсированных полифосфатов. Существенную роль в развитии евтрофикации водоемов играет сельское хозяйство. Смываемые с почвы и поступающие в водоемы и подземные воды минеральные удобрения и отходы животноводства нарушают природное равновесие существующих экосистем, приводят к бурному росту водорослей, что вызывает зарастание каналов, рек, озер, водохранилищ, особенно слабопроточных, приводит к гибели водоемов, превращая их в болото. Большой вред приносят смываемые с полей, орошаемых массивов, лесных почв пестициды, которые не поддаются биологическому распаду и сохраняются на протяжении многих лет в пресной и морской воде. Они вызывают гибель обитателей водоемов на ранних стадиях развития, различные мутации и вырождение особей. Особенно опасны хлороорганические пестициды, обладающие наибольшей способностью накапливаться в организме гидробионтов, что может приводить к летальному исходу. Большинство фосфороорганических пестицидов накапливаются в воде и рыбе в незначительных количествах. Разложение пестицидов под действием микроорганизмов в донных отложениях происходит наиболее быстро в тех случаях, когда образуются гидрофильные метаболиты. Сточные воды металлургических, химических, машиностроительных и других предприятий загрязняют водоемы солями тяжелых металлов, травильными растворами, железом, цинком и другими неорганическими веществами, многие из которых являются сильнейшими ядами. Тяжелые металлы (Pb, Hg, Zn, Cu, Cd, Ni, Co, Sn, Cr) и другие токсичные вещества прогрессивно накапливаются в пищевых цепях, конечным звеном которых является человек. Высокотоксичны - кадмий и цинк, содержащиеся в сбросных водах предприятий, занимающихся гальванизацией, а также заводов по выплавке цветных металлов, где эти металлы сбрасываются вместе со свинцом и медью. Внушают опасения такие элементы, как селен, мышьяк, сурьма, ртуть и висмут. Металлическая ртуть малотоксична, в то время как метиловая ртуть - сильнейший яд. Всемирно печальную известность приобрело отравление японцев, питавшихся рыбой из залива Минамата, в который химический комбинат долгие годы сбрасывал отходы, содержавшие метиловую ртуть. Развившаяся у них болезнь, названная «минамата», привела к заболеванию около 300 человек, из которых 59 умерло. В организм водных животных металлы попадают в основном с пищей. Для водных растений - через поверхность, путем непосредственного проникновения в ткани. Токсичность металлов зависит от концентрации, продолжительности действия, температуры, насыщенности воды кислородом и других факторов. Особенности токсического действия металлов заключаются в их универсальном влиянии на живые организмы как общеплазматических ядов и способности к образованию комплексов с компонентами клеток, белков, аминокислот и других радикалов. Действие тяжелых металлов обусловлено денатурирующим эффектом на ткани, клетки, белки, заключающимся в нарушении структуры коллоидных систем, осаждении белков, в связывании и блокировании активных центров ферментов. В результате отравления тяжелыми металлами нарушается проницаемость оболочек клеток крови. Это доказано на примере действия свинца, при отравлении которым эритроциты становятся проницаемы для калия. Образующиеся при попадании в организм трудно растворимые гидроксиды, фосфаты, альбуминаты или стойкие комплексы с тяжелыми металлами плохо всасываются из желудочно-кишечного тракта и способны откладываться в органах и тканях, избирательно накапливаясь в них. Например, в почках отмечено высокое содержание ртути, в эритроцитах - свинца, хрома, мышьяка и селена. В ионизированном состоянии металлы преимущественно депонируются в костной ткани (кадмий вызывает искривление и деформацию костей, сопровождающиеся сильными болями). Большую опасность представляют загрязнения вод радиоактивными веществами. В результате сбрасывания радиоактивных отходов повысилась радиоактивность Ирландского моря и прилегающего района Атлантического океана, Тихоокеанского побережья США и других районов океана. Особым видом загрязнения водоемов является «тепловое» загрязнение, вызываемое сбросом в них подогретой воды, используемой для охлаждения турбин ТЭЦ и других целей. Немаловажную проблему создало сбрасывание в водоемы нагретых производственных вод с температурой 35-37°С. Вследствие этого температура у мест сброса на большой площади повышается на несколько градусов, что приводит к гибели растительного и животного мира. Серьезную угрозу для гидросферы таит в себе все возрастающее загрязнение Мирового океана нефтью. По имеющимся данным, в Мировой океан попадает около 1% транспортируемой нефти. Нефть и нефтепродукты попадают в моря и океаны с балластными и промывными водами судов, во время катастроф с танкерами, при авариях на морских нефтяных промыслах. Источники загрязнения нефтью мировых водоемов представлены в табл. 8.2.
Таблица 8.2
Дата добавления: 2014-12-08; Просмотров: 1753; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |