Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы изучения структуры полимеров




Исторически задача установления строения ВМС была тесно связана с выяснением природы разбавленных растворов этих веществ. В результате работ Г. Штаудингера, В. А. Каргина, С. М. Липатова и других было доказано, что эти системы, вопреки господствующей ранее точке зрения о коллоидной природе их, являются истинными растворами. Следовательно, макромолекулы находятся в разбавленных растворах в виде кинетически самостоятельных частиц, и определение их величины дает не размеры мицеллы, а размеры самой макромолекулы, молекулярную массу. Измерение молекулярной массы при помощи ряда независимых способов показало, что все ВМС действительно состоят из очень больших молекул – макромолекул, содержащих десятки и даже сотни тысяч атомов.

Хотя свойства, типичные для ВМС, наблюдаются и у соединений со значительно меньшими молекулярными массами, в настоящее время принято относить к ВМС все вещества, молекулярная масса которых превышает 5000, а к низкомолекулярным – вещества, обладающие молекулярной массой меньше 500. Хотя соединения с промежуточными значениями молекулярной массы, так называемые олигомеры, как правило, и обладают свойствами низкомолекулярных, они в то же время отличаются от низкомолекулярных.

Для установления химического состава ВМС используются обычные приемы элементного анализа. Одним из методов, наиболее часто применяемых при исследовании ВМС, является деструкция, или расщепление макромолекул на низкомолекулярные вещества, строение которых доказывается обычными способами, – сложная проблема установления структуры высокомолекулярных вещества разбивается на ряд более простых задач, каждая из которых решается отдельно. Зная строение и свойства полученных «осколков» макромолекулы, можно сделать выводы о строении исходного вещества.

В зависимости от природы ВМС и его стойкости к различным воздействиям применяются гидролитический, термический, окислительный и другие методы деструкции.

Метод деструкции, сводящий исследование ВМС преимущественно к изучению продуктов их распада и дающий зачастую очень ценные сведения, все же отражает только одну сторону поведения макромолекулы и не может привести к однозначным выводам о ее строении даже в тех случаях, когда достаточно хорошо известен механизм расщепления. Не говоря уже о том, что сущность этого механизма далеко не всегда ясна, нередко при деструкции ВМС протекают побочные реакции, неправильная оценка которых может привести к ошибочным выводам.

В случае каучука и целлюлозы задача значительно упрощается тем, что в результате деструкции получалось небольшое число сравнительно легко разделяемых соединений. Относительно просто было установлено положение связей, соединяющих элементарные звенья. При изучении структуры таких сложных ВМС, как белки, продукты деструкции которых содержат более двух десятков различных аминокислот, к тому же трудно разделимых, ценность обычных методов деструкции значительно меньше. Поэтому наряду с исследованием продуктов деструкции необходимо изучать свойства и поведение самих макромолекул. При этом используются преимущественно не химические, а физические и физико-химические методы. Проблема настолько сложна, что достаточно надежные сведения о структуре ВМС могут быть получены только в результате совместного применения всех этих методов.

Наиболее широкое распространение получили методы молекулярной спектроскопии (инфракрасная спектроскопия и метод спектров комбинационного рассеяния), электронного парамагнитного резонанса и ядерно-магнитного резонанса, которые играют в настоящее время главную роль при изучении строения полимеров; большое значение имеют также электронография, рентгенография и электронная микроскопия.

Перечисленные методы дают сведения не только о строении макромолекулы (взаимное расположение и конформация цепей, упорядоченность их укладки, кристалличность), но и о характере теплового движения частиц (подвижность макромолекул и их фрагментов, процессы диффузии), о механизме синтеза полимеров и их химических превращениях, о процессах, протекающих вблизи фазовых границ, о природе взаимодействия макромолекул с растворителями и т. д.

Убедительные доказательства были получены при сопоставлении физических свойств высокомолекулярных членов гомологического ряда и более низкомолекулярных представителей того же ряда, обладающих заведомо цепным строением. При этом по мере снижения молекулярных масс первых и увеличения длины молекулы вторых наблюдается сближение их свойств без резких переходов; при существенных изменениях в форме молекулы плавность перехода должна быть непременно нарушена. Другими словами, высоко-, средне- и низкомолекулярные представители составляют единый гомологический ряд, члены которого имеют одинаковое цепное строение.

Цепное строение макромолекулы вытекает непосредственно из самих методов получения их при помощи реакций полимеризации и поликонденсации. Только цепным строением может быть объяснена такая важнейшая физико-химическая особенность высокомолекулярных веществ, как резкое различие их свойств в продольном (вдоль цепи) и поперечном направлении после ориентации (молекулы располагаются вдоль линии растяжки).

Следовательно, характерной особенностью ВМС является наличие длинных цепных молекул; утрата цепного строения влечет за собой исчезновение всего комплекса специфических для этих веществ свойств.

Выяснением строения основной цепи далеко не исчерпывается вопрос определения структуры макромолекулы. Необходимо еще установить природу и количество функциональных групп, их взаимное расположение в пространстве, наличие «аномальных» звеньев и некоторых других деталей строения, оказывающих существенное влияние на свойства высокомолекулярных веществ.

Функциональные группы определяют классическими методами органической химии. Важным вопросом является установление взаимного расположения функциональных групп, от которых зависят гибкость макромолекул и способность их к кристаллизации. В некоторых случаях такие сведения могут быть получены при исследовании продуктов деструкции, однако чаще всего эта задача решается изучением отношения самой макромолекулы к специальным реактивам или при помощи спектральных методов.

Спектроскопические методы широко применяются также при выяснении других вопросов строения высокомолекулярных соединений; для этого обычно пользуются спектральными поглощениями:

- спектры комбинационного рассеяния,

- ультрафиолетовые,

- инфракрасные спектры.

Эти методы позволяют различать 1,2- и 1,4-присоединения, выяснять структуру сополимеров, а также устанавливать на основании характеристических частот наличие тех или иных химических групп и связей, что очень важно в том случае, когда химические методы не позволяют получить однозначный ответ или недостаточно чувствительны. Сравнивая спектры ВМС и их низкомолекулярных аналогов известного строения, можно судить о характере распределения элементарных звеньев в макромолекуле, о регулярности ее строения, а также идентифицировать ВМС.

Особый интерес представляет метод ЯМР для установления взаимного расположения заместителей. Метод ЯМР13 С, который применяется для исследования соединений по естественному содержанию тяжелого изотопа 13С, оказывает существенную помощь при установлении строения разветвленных ВМС.

При помощи рентгеновских диаграмм можно найти периоды идентичности, то есть расстояние между двумя одинаково расположенными в пространстве группами и атомами, что позволяет делать выводы о регулярности строения макромолекулы и наличии изомеров. Например, период идентичности на рентгенограмме натурального каучука (растянутого) составляет в направлении растяжения 0,816 нм; гуттаперчи – изомера каучука – соответствующий период равен всего 0,48 нм. Эти данные дали основание приписать натуральному каучуку цис -строение, а гуттаперче – транс -строение (по расположению группы СН2).




Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 2302; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.