Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Состав резины. 1 страница




План

РЕЗИНОВЫЕ МАТЕРИАЛЫ

ЛЕКЦИЯ 6

1. Общие сведения.

2. Состав и классификация резин.

3. Резины общего назначения.

4. Резины специального назначения.

 

Резиной называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками.

 

Особенности резины как технического материала.

Резина как технический материал отличается от других материалов:

1. высокими эластическими свойствами (эти свойства присущи каучуку – главному исходному компоненту резины);

2. способностью к очень большим деформациям (относительное удлинение достигает 1000%), которые почти полностью обратимы.

3. модуль упругости 1-10 МПа, т.е. он в тысячи и десятки тысяч раз меньше, чем для других материалов;

4. малая несжимаемость (для инженерных расчетов резину считают несжимаемой);

5. коэффициент Пуассона 0,4 – 0,5 (для металлов эта величина – 0,25 – 0,30);

6. релаксационный характер деформации;

7. низкая теплопроводность.

Кроме отмеченных особенностей для резиновых материалов характерны:

- высокая стойкость к истиранию;

- газо-и водонепроницаемость;

- химическая стойкость;

- электроизолирующие свойства;

- небольшая плотность.

При нормальной температуре резина находится в высокоэластическом состоянии и ее свойства сохраняются в широком диапазоне температур.

При работе резины в условиях многократных механических напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение (в самом каучуке и между молекулами каучука и частицами добавок); это трение преобразуется в теплоту.

При эксплуатации толстостенных деталей вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.

 

Основа резины – каучук натуральный (НК) или синтетический (СК), который определяет основные свойства резинового материала.

Подавляющее большинство каучуков является непредельными. Высокополимерными (карбоцепными) соединениями с двойной химической связью между углеродными атомами в элементарных звеньях макромолекулы. Молекулярная масса каучуков 400 000 – 450 000. Структура макромолекул линейная или слаборазветвленная и состоит из отдельных звеньев, которые имеют тенденцию свернуться в клубок, занять минимальный объем, но этому мешают силы межмолекулярного взаимодействия, поэтому молекулы каучука извилистые (зигзагообразные) Такая форма молекул является причиной исключительно высокой эластичности каучука (под небольшой нагрузкой происходит выпрямление молекул, изменяется их конформация). По свойствам каучуки напоминают термопластичные полимеры. При определенных условиях их можно переводить в термостабильное состояние. Для этого по месту двойной связи присоединяется сера (или другое вещество). Они образуют в поперечном направлении как бы «мостики» между нитевидными молекулами каучука, в результате чего получается пространственно-сетчатая структура, присущая резине (вулканизату). Процесс химического взаимодействия каучуков с серой в технике называется вулканизацией.

В зависимости от количества вводимой серы получается различная частота сетки полимера:

- 1-5% S образуется редкая сетка, и резина получается высокоэластичной, мягкой;

- 30% - максимально возможное насыщение каучука серой образуется твердый материал – эбонит – (сетчатая структура более частая, резина более твердая).

При вулканизации изменяется молекулярная структура полимера, происходит изменение свойств:

Резко возрастает прочность при растяжении и эластичность каучука, а пластичность почти полностью исчезает (НК имеет σв =1,0-1,5 МПа после вулканизации σв = 35 МПа).

ОБЩИЕ СВЕДЕНИЯ, СОСТАВ И КЛАССИФИКАЦИЯ РЕЗИН

Резиной называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками.

Резина как технический материал отличается от других материалов высокими эластическими свойствами, которые присущи каучуку — главному исходному компоненту резины. Она способна к очень большим деформациям (относительное удлинение достигает 1000 %), которые почти полностью обратимы. При нормальной температуре резина находится в высокоэластическом состоянии и ее эластические свойства сохраняются в широком диапазоне температур.

Модуль упругости лежит в пределах 1—10 МПа, т. е. он в тысячи и десятки тысяч раз меньше, чем для других материалов. Особенностью резины является ее малая сжимаемость (для инженерных расчетов резину считают несжимаемой); коэффициент Пуассона 0,4—0,5, тогда как для металла эта величина составляет 0,25 - 0,30. Другой особенностью резины как технического материала является релаксационный характер деформации. При нормальной температуре время релаксации может составлять 10-4 с и более. При работе резины в условиях многократных механиче­ских напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение (в самом каучуке и между молеку­лами каучука и частицами добавок); это трение преобразуется в теплоту и является причиной гистерезисных потерь. При эксплуатации толстостенных деталей (например, шин) вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.

Кроме отмеченных особенностей для резиновых материалов характерны высокая стойкость к истиранкюугазо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.

Состав и классификация резин. Основой всякой резины служит каучук натуральный (НК) или синтетический (СК), который и определяет основные свойства резинового материала. Для улуч­шения физико-механических свойств каучуков вводятся различ­ные добавки (ингредиенты). Таким образом, резина состоит из каучука и ингредиентов, рассмотренных ниже.

1.Вулканизирующие вещества (агенты) участвуют в образовании пространственно-сеточной структуры вулканизата. Обычно в качестве таких веществ применяют серу и селен, для некоторых канчуков перекиси. Для резины электротехнического назначения вместо элементарной серы (которая взаимодействует с медью) применяют органические сернистые соединения — тиурам (тиурамовые резины).

Ускорители процесса вулканизации; полисульфиды, оксиды свинца, магния и другие влияют как на режим вулканизации, так и на физико-механические свойства вулканизатов. Ускорители проявляют свою наибольшую активность в присутствии оксидов некоторых металлов (цинка и др.), называемых поэтому в составе резиновой смеси активаторами.

2.Противостарители (антиоксиданты) замедляют процесс старения резины, который ведет к ухудшению ее эксплуатационных свойств. Существуют Противостарители химического и физиче­ского действия. Действие первых заключается в том, что они задерживают окисление каучука в результате окисления их самих или за счет разрушения образующихся перекисей каучука (приме­няются альдоль, неозон Д и др.). Физические Противостарители (парафин, воск) образуют поверхностные защитные пленки, они применяются реже.

3.Мягчители (пластификаторы) облегчают переработку рези­новой смеси, увеличивают эластические свойства каучука, повы­шают морозостойкость резины. В качестве мягчителей вводят пара­фин, вазелин, стеариновую кислоту, битумы, дибутилфталат, рас­тительные масла. Количество мягчителей составляет 8—30 % массы каучука.

4.Наполнители по воздействию на каучук подразделяют на активные (усиливающие) и неактивные (инертные). Активные наполнители (углеродистая сажа и белая сажа — кремнекислота, оксид цинка и др.) повышают механические свойства резин:

прочность, сопротивление истиранию, твердость.

Неактивные наполнители (мел, тальк, барит) вводятся для удешевления стои­мости резины.

Часто в состав резиновой смеси вводят регенерат — продукт переработки старых резиновых изделий и отходов резинового производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.

5.Красители минеральные или органические вводят для ок­раски резин. Некоторые красящие вещества (белые, желтые, зеле­ные) поглощают коротковолновую часть солнечного спектра и этим защищают резину от светового старения.

Подавляющее большинство каучуков является непредельными, высокополимерными (карбоцепными) соединениями с двойной химической связью между углеродными атомами в элементарных звеньях макромолекулы. (Некоторые каучуки получают на основе насыщенных линейных полимеров.) Молекулярная масса каучу­ков исчисляется в 400 000—450 000. Структура макромолекул линейная или слаборазветвленная и состоит из отдельных звеньев, которые имеют тенденцию свернуться в клубок, занять минималь­ный объем, но этому препятствуют силы межмолекулярного взаи­модействия, поэтому молекулы каучука извилистые (зигзагооб­разные). Такая форма молекул и является причиной исключи­тельно высокой эластичности каучука (под небольшой нагрузкой происходит выпрямление молекул, изменяется их конформация). По свойствам каучуки напоминают термопластичные полимеры. Наличие в молекулах каучука непредельных связей позволяет при определенных условиях переводить его в термостабильное состояние. Для этого по месту двойной связи присоединяется двухвалентная сера (или другое вещество), которая образует в поперечном направлении как бы «мостики» между нитевидными молекулами каучука, в результате чего получается пространствен­но-сетчатая структура, присущая резине (вулканизату). Процесс химического взаимодействия каучуков с серой в технике назы­вается вулканизацией.

В зависимости от количества вводимой серы получается раз­личная частота сетки полимера. При введении 1—5 % 8 образуется редкая сетка и резина получается высокоэластичной, мягкой. С увеличением процентного содержания серы сетчатая структура становится все более частой, резина более твердой, и при макси­мально возможном (примерно 30 %) насыщении каучука серой образуется твердый материал, называемый эбонитом.

При вулканизации изменяется молекулярная структура поли­мера (образуется пространственная сетка), что влечет за собой изменение его физико-механических свойств: резко возрастает прочность при растяжении и эластичность каучука, а пластич­ность почти полностью исчезает (например, натуральный каучук имеет δВ= 1,0—1,5 МПа, после вулканизации δВ == 35 МПа);

увеличиваются твердость, сопротивление износу. Многие кау­чуки растворимы в растворителях, резины только набухают в них и более стойки к химикатам. Резины имеют более высокую тепло­стойкость (НК размягчается при температуре 90 °С, резина рабо­тает при температуре свыше 100 °С).

На изменение свойств резины влияет взаимодействие каучука с кислородом, поэтому при вулканизации одновременно происхо­дят два процесса: структурирование под действием вулканизую­щего агента и деструкция под влиянием окисления и температура. Преобладание того или иного процесса сказывается на свойствах вулканизата. Это особенно характерно для резин из НК. Для син­тетических каучуков (СК) процесс вулканизации дополняется полимеризацией: под действием кислорода и температуры обра­зуются межмолекулярные углеродистые связи, упрочняющие термостабильную структуру, что дает повышение прочности.

Термическая устойчивость вулканизата зависит от харак­тера образующихся в процессе вулканизации связей. Наиболее прочные, а следовательно, термоустойчивые связи —С—С—, наименьшая поочность v полисульфидной связи —С—5—С.

Современная физическая теория упрочнения каучука объяс­няет повышение его прочности наличием сил связи (адсорбции и адгезии), возникающих между каучуком и наполнителем, а также образованием непрерывной цепочно-сетчатой структуры напол­нителя вслеДствие взаимодействия между частицами наполнителя. Возможно и химическое взаимодействие каучука с наполнителем.

По объему мирового потребления НК составляет 30 %, осталь­ное СК, который известен 250 видов.

По назначению резины подразделяют на резины общего назна­чения и резины специального назначения (специальные).

РЕЗИНЫ ОБЩЕГО НАЗНАЧЕНИЯ

К группе резин общего назначения относят вулканизаты неполярных каучуков — НК, СКВ, СКС, СКИ.

НКнатуральный каучук является полимером изопрена (С5Н8)л. Он растворяется в жирных и ароматических растворите­лях (бензине, бензоле, хлороформе, сероуглероде и др.), обра­зуя вязкие растворы, применяемые в качестве клеев. При нагреве выше 80—100 °С каучук становится пластичным и при 200 °С начинает разлагаться. При температуре —70 °С НК становится хрупким. Обычно НК аморфен. Однако при длительном хранении возможна его кристаллизация. Кристаллическая фаза возникает также при растяжении каучука, что значительно увеличивает его прочность. Для получения резины НК вулканизуют серой. Резины на основе НК отличаются высокой эластичностью, проч­ностью, водо- и газонепроницаемостью, высокими электроизоля­ционными свойствами: рv = 3-Ю14 — 23-Ю18 Ом-см; & == 2,5.

СКВсинтетический каучук бутадиеновый (днвинильный) получают по методу С. В. Лебедева. Формула полибутадиена Он является некристаллизующимся каучуком и имеет низкий предел прочности при растяжении, поэтому в резину на его основе необходимо вводить усиливающие наполнители. Моро­зостойкость бутадиенового каучука невысокая (от—40 до —45 °С). Он набухает в тех же растворителях, что и НК. Стереорегулярный дивинильный каучук СКД по основным техническим свойствам приближается к НК. Дивинильные каучуки вулканизуются серой аналогично натуральному каучуку.

СКСбутадиенстирольный каучук получается при совмест­ной полимеризацией бутадиена 4Н6) и стирола (СН2==СН—СвН5)-Это самый распространенный каучук общего назначения.

В зависимости от процентного содержания стирола каучук выпускают нескольких марок: СКС-10, СКС-30, СКС-50. Свойства каучука зависят от содержания стирольных звеньев. Так, напри­мер, чем больше стирола, тем выше прочность, но ниже морозо­стойкость. Из наиболее распространенного каучука СКС-30 полу­чают резины с хорошим сопротивлением старению и хорошо работающие при многократных деформациях. По газонепроницае мости и диэлектрическим свойствам они равноценны резинам на основе НК. Каучук СКС-10 можно применять при низких темпе­ратурах (от —74 до —77 °С). При подборе соответствующих напол­нителей можно • получить резины с высокой механической проч­ностью.

СКИсинтетический каучук изопреновый — продукт поли­меризации изопрена С5Н8). Получение СКИ стало возможным в связи с применением новых видов катализаторов. По строению, химическим и физико-механическим свойствам СКИ близок к на­туральному каучуку. Промышленностью выпускаются каучуки СКИ-3 и СКИ-ЗП, наиболее близкие по свойствам к НК; каучук СКИ-ЗД, предназначенный для получения электроизоляционных резин, СКИ-ЗВ — для вакуумной техники.

Резины общего назначения могут работать в среде воды, воз­духа, слабых растворов кислот и щелочей. Интервал рабочих температур составляет от —35 до 130 °С. Из этих резин изгото­вляют шины, ремни, рукава, конвейерные ленты, изоляцию кабе­лей, различные резинотехнические изделия.

РЕЗИНЫ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

Специальные резины подразделяют на несколько видовз маслобензостойкие, теплостойкие, ^светоозоностойкие, износостой­кие, электротехнические, стойкие к гидравлическим жидкостям.

Маслобензостойкие резины получают на основе каучуков хлоропренового (наирит), СКН и тиокола.

Наирит является отечественным хлоропреновым каучуком. Хлоропрену соответствует формула СН2=ССl—СН=СН2.

Вулканизация может проводиться термообработкой даже без серы, так как под действием температуры каучук переходит в тер­мостабильное состояние. Резины на основе наирита обладают высокой эластичностью, вибростойкостью, озоностойкостью, устойчивы к действию топлива и масел, хорошо сопротивляются тепловому старению. (Окисление каучука замедляется экрани­рующим действием хлора на двойные связи.) По темпер ату роустой-чивости и морозостойкости (от —35 до —40 °С) они уступают как НК, так и другим СК. Электроизоляционные свойства резины на основе полярного наирита ниже, чем у резины на основе неполяр­ных каучуков. (За рубежом полихлоропреновый каучук выпус­кается под названием неопрен, пербунан-С и др.).

СКНбутадиеннитрильный каучук — продукт совместной полимеризации бутадиена с нитрилом акриловой кислоты:

—СН2—СН =СН—СН2—СН2—СНСN—

В зависимости от состава каучук выпускают следующих марок? СКН-18, СКН-26, СКН-40. (Зарубежные марки: хайкар, пербунан, буна-М и др.). Присутствие в молекулах каучука группы СМ сообщает ему полярные свойства. Чем выше полярность каучука, тем выше его механические и химические свойства и тем ниже морозостойкость (например, для СКН" 18 от —50 до —60 °С, для СКН-40 от —26 до —28 °С). Вулканизируют СКН с помощью серы. Резины на основе СКН обладают высокой прочностью (δВ •== = 35 МПа), хорошо сопротивляются истиранию, но по эластич­ности уступают резинам на основе НК, превосходят их по стой­кости к старению и действию разбавленных кислот и щелочей. Резины могут работать в среде бензина, топлива, масел в интер­вале температур от —30 до 130 °С. Резины на основе СКН приме­няют для производства ремней, конвейерных лент, рукавов, маслобензостойких резиновых деталей (уплотнительные прокладки, манжеты и т. п.).

Полисульфидный каучук, или тиокол, образуется при взаимо­действии галоидопроизводных углеводородов с многосернистыми соединениями щелочных металлов;..—СН2—СН2—S2—S2—...

Тиокол вулканизуется перекисями. Присутствие в основной цепи макромолекулы серы придает каучуку полярность, вслед­ствие чего он становится устойчивым к топливу и маслам, к дей­ствию кислорода, озона, солнечного света. Сера также сообщает тиоколу высокую газонепроницаемость (выше, чем у НК), по­этому тиокол — хороший герметизирующий материал. Механи­ческие свойства резины н2 основе тиокола невысокие. Эластич­ность резин сохраняется при температуре от —40 до —60 °С. Теплостойкость не превышает 60—70 °С. Тиоколы новых марок работают при температуре до 130 °С.

Акрилатные каучука сополимеры эфиров акриловой (или метакриловой) кислоты с акрилонитрилом и другими полярными мономерами — можно отнести к маслобензостойким каучукам. Каучуки выпускают марок БАК-12, БАКХ-7, ЭАХ. Для полу­чения высокопрочных резин вводят усиливающие наполнители. Достоинством акрилатных резин является стойкость к действию серосодержащих масел при высоких температурах; их широко применяют в автомобилестроении. Они стойки к действию кисло­рода, достаточно теплостойки, обладают адгезией к полимерам и металлам. Недостатками БАК являются малая эластичность, низкая морозостойкость, невысокая стойкость к воздействию горячей воды и пара.

Теплостойкие резины получают на основе каучука СКТ.

СКТсинтетический каучук теплостойкий, представляет собой кремнийорганическое (полисилоксановое) соединение с хи­мической формулой

... —Si (СН3)2 - 0-Si (СН3)2—...

Каучук вулканизуется перекисями и требует введения уси­ливающих наполнителей (белая сажа). Присутствие в основной молекулярной цепи прочной силоксановой связи придает каучуку высокую теплостойкость. Так как СКТ слабо полярен, он обла­дает хорошими диэлектрическими свойствами. Диапазон рабочих температур СКТ составляет от —60 до 250 °С. Низкая адгезия, присущая кремнийорганическим соединениям (вследствие их сла­бой полярности), делает СКТ водостойким и гидрофобным (напри­мер, применяется для защиты от обледенения). В растворителях и маслах он набухает, имеет низкую механическую прочность, высокую газопроницаемость, плохо сопротивляется истиранию. При замене метальных групп (СНз) другими радикалами полу­чают другие виды силоксановых каучуков. Каучук с винильной группой (СКТВ) устойчив к тепловому старению и обладает мень­шей текучестью при сжатии, температура эксплуатации от —55 до 300 °С. Вводя фенильную группу (С6Н5), получают каучук (СКТФВ), обладающий повышенной морозостойкостью (от —80 до —100 °С) и сопротивляемостью к действию радиации. Можно сочетать различные радикалы, обрамляющие силоксановую связь. Так, фенилвинилсилоксановый каучук имеет повышенные механи­ческие свойства. Если ввести в боковые группы макромолекулы СКТ атомы Р или группу СМ, приобретается устойчивость к топ­ливу и маслам. Введение в основную цепь атомов бора, фосфора дает возможность повысить теплостойкость резин до 350—400 °С и увеличить их клеящую способность. Силоксановые резины сгорают при 600—700 °С, а в течение нескольких секунд выдер­живают 3000 °С.

Морозостойкими являются резины на основе каучуков, име­ющих низкие температуры стеклования. Например, резины на основе СКС-10 и СКД могут работать при температуре до —60 °С;

НК, СКВ, СКС-30, СКН—до —50°С, СКТ — ниже —75°С.

Светоозоностойкие резины вырабатывают на основе насыщен­ных каучуков —фторсодержащих (СКФ), этиленпропиленовых (СКЭП), бутилкаучука.

Фторсодержащие каучуки получают сополимеризацией нена­сыщенных фторированных углеводородов (например, СF2 = СFС1, СНз == СF2 и др.). Отечественные фторкаучуки выпускают под марками СКФ-32, СКФ-26; зарубежные — кель-Ф и вайтон. Кау­чуки устойчивы к тепловому старению, воздействию масел, топ­лива, различных растворителей (даже при повышенных темпера­турах), негорючи. Вулканизованные резины обладают высоким сопротивлением истиранию. Теплостойкость длительная (до 300 °С). Недостатками является малая стойкость к большинству тормозных жидкостей и низкая эластичность. Резины из фторкаучуков широко применяют в авто" и авиапромышленности.

СКЭПсополимер этилена с пропиленом — представляет со­бой белую каучукообразную масбу, которая обладает высокой прочностью и эластичностью, очень устойчива к тепловому старе­нию, имеет хорошие диэлектрические свойства. Кроме СКЭП выпускают тройные сополимеры СКЭПТ (за рубежом близкие по свойствам каучуки — висталом и дутрал).

Резины на основе фторкаучуков и этиленпропилена стойки к действию сильных окислителей (НNОз, Н2О2 и др.), применяются для уплотнительных изделий, диафрагм, гибких шлангов и т. д., не разрушаются при работе в атмосферных условиях в течение нескольких лет.

Хлорсульфо полиэтилен (ХСПЭ) является насыщенным полиме­ром. Его вулканизация основана на взаимодействии с группами ЗО^С! и С1. Вулканизаты ХСПЭ имеют высокую прочность (о-в == == 16—26 МПа), относительное удлинение 8 == 280 — 560 %. Они обладают повышенным сопротивлением истиранию при нагре­ве, озоно-, масло- и бензостойки, хорошие диэлектрики. Интервал рабочих температур от —60 до 215 °С. Применяют эти резины как конструкционный и защитный материал (противокоррозионные, не обрастающие в морской воде водорослями и микроорганизмами покрытия, для защиты от воздействия у-излучения).

Бутилкаучук (Б К) получают совместной полимеризацией изо-бутилена с небольшим количеством изопрена (2—3 %).

В бутилкаучуке мало ненасыщенных связей, вследствие чего он обладает стойкостью к кислороду, озону и другим химическим реагентам. Каучук кристаллизующийся, что позволяет получать материал с высокой прочностью (хотя эластические свойства низ­кие). Каучук обладает высоким сопротивление истиранию и высо­кими диэлектрическими характеристиками. По темпер атуростой-кости уступает другим резинам, превосходя их по газо- и паро-непроницаемости.

Бутилкаучук — химически стойкий материал. В связи с этим он в основном предназначен для работы в контакте с концентриро­ванными кислотами и другими химикатами; кроме того, его при­меняют в шинном производстве (срок службы покрышек в 2 раза выше, чем покрышек из НК).

Износостойкие резины получают на основе полиуретановых каучуков СКУ.

Полиуретановые каучуки обладают высокой прочностью, элас­тичностью, сопротивлением истиранию, маслобензостой костью. В структуре каучука нет ненасыщенных связей, поэтому он стоек к кислороду и озону, его газонепроницаемость в 10—20 раз выше, чем газопроницаемость НК. Рабочие температуры резин на его основе составляют от —30 до 130°С. На основе сложных поли­эфиров вырабатывают каучуки СКУ-7, СКУ-8, СКУ-50; на основе простых полиэфиров — СКУ-ПФ, СКУ-ПФЛ. Последние отличаются высокой- морозостойкостью (для- СКУ-ПФ— до -—75 °С)-и гидролитической стойкостью. Уретановые резины стойки к воз­действию радиации. Зарубежные названия уретановых каучуков — вулколлан, адипрен, джентан, урепан. Резины на основе СКУ применяют для автомобильных шин, конвейерных лент, обкладки труб и желобов для транспортирования абразивных материалов, обуви.

Таблица 50. Физико-механические свойства каучуков и саженаполненных резин.

Группа по назначению   Тип каучука   Плотность каучука, кг/м3   Предел прочности, МПа   Удлинение, %   Температура, °С   Набухание в смеси бензин - бензол за 24 ч, %  
относи­тельное   оста­точное   рабочая   хрупкости  
Общего назначения   нк   910-920   "^ 24-34   600-800   25-40   80-130   -40- -62      
    СКВ   900-920   13-16   500-600   10-45   80-150   -42- - 68      
    скс   919-44   19-32   500-800   12-20   80-130   -48- -77   200-600  
    ски   910-920   31,5   600-800       -58      
Специальные:                                  
бензомаслостойкие   Наирит     20-26,5   450-550   10-20   100-130   -34   40-80  
    скн   943-986   22-33   450-700   15-30   100-177   -48   20-70  
    Тиокол   1300-1400   3,2-4,2   250-550   20-40   60-130   -40   2,4  
химически стойкие   Бутил каучук     16-24   650-800   30-45   До 130   -30- -70   Набухает  
теплостойкие   скт.   1700-2000   35-80       250-325   -74    
теплохимически стойкие   СКФ   1800-1900   7-20   200-400   2-10   250-325   -40   9-14  
износостойкие   СКУ   -   21-60   350-550   2-28     -21- -50   Не набу­хает  

 

Электротехнические резины включают электроизоляционные и электропроводящие резины. Электроизоляционные резины, при­меняемые для изоляции токопроводящей жилы проводов и кабелей, для специальных перчаток и обуви, изготовляют только на основе неполярных каучуков НК, СКВ; СКС, СКТ и бутилкаучука. Для них ру = 1011 — 1015 Ом. см, б = 2,5 — 4, 1§ 6 == 0,005 — 0,01.

Электропроводящие резины для экранированных кабелей полу­чают из каучуков НК, СКН, наирита, особенно из полярного кау­чука СКН-26 с введением в их состав углеродной сажи и графита (65—70 %). Для них ру = 102 —104 Ом*см.

Резину, стойкую к воздействию гидравлических жидкостей, используют для уплотнения подвижных и неподвижных соеди­нений гидросистем, рукавов, диафрагм, насосов; для работы в масле применяют резину на основе каучука СКН, набухание ко­торой в жидкости не превышает 1—4 %. Для кремнийорганических жидкостей применимы неполярные резины на основе каучуков НК, СКМС-10 и др.




Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 1820; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.