КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность
Задачи 5 и 6. Для решения задач 5 и 6 необходимо изучить раздел 2 – «Введение в математический анализ». Приведем основные теоретические факты, необходимые здесь. Числовая последовательность. x1, х2, …, хn = {xn} Общий элемент последовательности является функцией от n. xn = f(n) Таким образом последовательность может рассматриваться как функция порядкового номера элемента. Задать последовательность можно различными способами – главное, чтобы был указан способ получения любого члена последовательности. Пример. {xn} = {(-1)n} или {xn} = -1; 1; -1; 1; … {xn} = {sinpn/2} или {xn} = 1; 0; 1; 0; … Для последовательностей можно определить следующие операции: 1) Умножение последовательности на число m: m{xn} = {mxn}, т.е. mx1, mx2, … 2) Сложение (вычитание) последовательностей: {xn} ± {yn} = {xn ± yn}. 3) Произведение последовательностей: {xn}×{yn} = {xn×yn}. 4) Частное последовательностей: при {yn} ¹ 0. Ограниченные и неограниченные последовательности. Определение. Последовательность {xn} называется ограниченной, если существует такое число М>0, что для любого n верно неравенство: т.е. все члены последовательности принадлежат промежутку (-М; M). Определение. Последовательность {xn}называется ограниченной сверху, если для любого n существует такое число М, что xn £ M. Определение. Последовательность {xn}называется ограниченной снизу, если для любого n существует такое число М, что xn ³ M Пример. {xn} = n – ограничена снизу {1, 2, 3, … }. Определение. Число а называется пределом последовательности {xn}, если для любого положительного e>0 существует такой номер N, что для всех n > N выполняется условие: Это записывается: lim xn = a. В этом случае говорят, что последовательность {xn} сходится к а при n®¥. Свойство: Если отбросить какое- либо число членов последовательности, то получаются новые последовательности, при этом если сходится одна из них, то сходится и другая. Пример. Доказать, что предел последовательности lim . Пусть при n > N верно , т.е. . Это верно при , таким образом, если за N взять целую часть от , то утверждение, приведенное выше, выполняется. Пример. Показать, что при n®¥ последовательность 3, имеет пределом число 2.
Итого: {xn}= 2 + 1/n; 1/n = xn – 2 Очевидно, что существует такое число n, что , т.е. lim {xn} = 2. Свойство: Последовательность не может иметь более одного предела. Свойство: Если xn ® a, то . Свойство: Если xn ® a, то последовательность {xn} ограничена. Следует отметить, что обратное утверждение неверно, т.е. из ограниченности последовательности не следует ее сходимость. Например, последовательность не имеет предела, хотя Монотонные последовательности. Определение. 1) Если xn+1 > xn для всех n, то последовательность возрастающая. 2) Если xn+1 ³ xn для всех n, то последовательность неубывающая. 3) Если xn+1 < xn для всех n, то последовательность убывающая. 4)Если xn+1 £ xn для всех n, то последовательность невозрастающая Все эти последовательности называются монотонными. Возрастающие и убывающие последовательности называются строго монотонными. Пример. {xn} = 1/n – убывающая и ограниченная {xn} = n – возрастающая и неограниченная. Пример. Доказать, что последовательность {xn}= монотонная возрастающая. Найдем член последовательности {xn+1}= Найдем знак разности: {xn}-{xn+1}= , т.к. nÎN, то знаменатель положительный при любом n. Таким образом, xn+1 > xn. Последовательность возрастающая, что и следовало доказать. Пример. Выяснить является возрастающей или убывающей последовательность {xn} = . Найдем . Найдем разность , т.к. nÎN, то 1 – 4n <0, т.е. хn+1 < xn. Последовательность монотонно убывает. Следует отметить, что монотонные последовательности ограничены по крайней мере с одной стороны. Свойство: Монотонная ограниченная последовательность имеет предел. Число е. Рассмотрим последовательность {xn} = . Можно доказать, что она монотонно возрастающая и ограниченная сверху, т.е. имеет конечный предел. Этот предел принято обозначать буквой е. Число е является основанием натурального логарифма. Предел функции в точке.
y f(x)
A + e A A - e
0 a - D a a + D x
Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)
Определение. Число А называется пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что 0 < ïx - aï < D верно неравенство ïf(x) - Aï< e. То же определение может быть записано в другом виде: Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e. Запись предела функции в точке: Определение. Если f(x) ® A1 при х ® а только при x < a, то - называется пределом функции f(x) в точке х = а слева, а если f(x) ® A2 при х ® а только при x > a, то называется пределом функции f(x) в точке х = а справа.
у f(x)
А2
А1
0 a x
Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки. Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А – конечный предел функции f(x). Предел функции при стремлении аргумента к бесконечности. Определение. Число А называется пределом функции f(x) при х®¥, если для любого числа e>0 существует такое число М>0, что для всех х, ïхï>M выполняется неравенство При этом предполагается, что функция f(x) определена в окрестности бесконечности. Записывают:
Графически можно представить:
y y
A A
0 0 x x
y y
A A
0 0 x x
Аналогично можно определить пределы для любого х>M и для любого х<M.
Основные свойства пределов. Свойство 1. , где С = const. Следующие свойства справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а. Свойство 2. Свойство 3. Следствие. Свойство 4. при Свойство 5. Если f(x)>0 вблизи точки х = а и , то А>0. Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0. Свойство 6. Если g(x) £ f(x) £ u(x) вблизи точки х = а и , то и . Определение. Функция f(x) называется ограниченной вблизи точки х = а, если существует такое число М>0, что ïf(x)ï<M вблизи точки х = а. Свойство 7. Если функция f(x) имеет конечный предел при х®а, то она ограничена вблизи точки х = а.
Бесконечно малые функции. Определение. Функция f(x) называется бесконечно малой при х®а, где а может быть числом или одной из величин ¥, +¥ или -¥, если Бесконечно малой функция может быть только если указать к какому числу стремится аргумент х. При различных значениях а функция может быть бесконечно малой или нет. Пример. Функция f(x) = xn является бесконечно малой при х®0 и не является бесконечно малой при х®1, т.к. . Теорема. Для того, чтобы функция f(x) при х®а имела предел, равный А, необходимо и достаточно, чтобы вблизи точки х = а выполнялось условие f(x) = A + a(x), где a(х) – бесконечно малая при х ® а (a(х)®0 при х ® а). Свойства бесконечно малых функций: 1) Сумма фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а. 2) Произведение фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а. 3) Произведение бесконечно малой функции на функцию, ограниченную вблизи точки х = а является бесконечно малой функцией при х®а. 4) Частное от деления бесконечно малой функции на функцию, предел которой не равен нулю есть величина бесконечно малая. Бесконечно большие функции и их связь с бесконечно малыми. Определение. Предел функции f(x) при х®а, где а- число, равен бесконечности, если для любого числа М>0 существует такое число D>0, что неравенство ïf(x)ï>M выполняется при всех х, удовлетворяющих условию 0 < ïx - aï < D Записывается . Собственно, если в приведенном выше определении заменить условие ïf(x)ï>M на f(x)>M, то получим: а если заменить на f(x)<M, то: Графически приведенные выше случаи можно проиллюстрировать следующим образом:
a x a x a x
Определение. Функция называется бесконечно большой при х®а, где а – число или одна из величин ¥, +¥ или -¥, если , где А – число или одна из величин ¥, +¥ или -¥. Связь бесконечно больших и бесконечно малых функций осуществляется в соответствии со следующей теоремой. Теорема. Если f(x)®0 при х®а (если х®¥) и не обращается в ноль, то Сравнение бесконечно малых функций. Пусть a(х), b(х) и g(х) – бесконечно малые функции при х ® а. Будем обозначать эти функции a, b и g соответственно. Эти бесконечно малые функции можно сравнивать по быстроте их убывания, т.е. по быстроте их стремления к нулю. Например, функция f(x) = x10 стремится к нулю быстрее, чем функция f(x) = x. Определение. Если , то функция a называется бесконечно малой более высокого порядка, чем функция b. Определение. Если , то a и b называются бесконечно малыми одного порядка. Определение. Если то функции a и b называются эквивалентными бесконечно малыми. Записывают a ~ b. Пример. Сравним бесконечно малые при х®0 функции f(x) = x10 и f(x) = x. т.е. функция f(x) = x10 – бесконечно малая более высокого порядка, чем f(x) = x. Определение. Бесконечно малая функция a называется бесконечно малой порядка k относительно бесконечно малой функции b, если предел конечен и отличен от нуля. Однако следует отметить, что не все бесконечно малые функции можно сравнивать между собой. Например, если отношение не имеет предела, то функции несравнимы. Пример. Если , то при х®0 , т.е. функция a - бесконечно малая порядка 2 относительно функции b. Пример. Если , то при х®0 не существует, т.е. функция a и b несравнимы.
Свойства эквивалентных бесконечно малых. 1) a ~ a, 2) Если a ~ b и b ~ g, то a ~ g, 3) Если a ~ b, то b ~ a, 4) Если a ~ a1 и b ~ b1 и , то и или . Следствие: а) если a ~ a1 и , то и б) если b ~ b1 и , то Некоторые замечательные пределы. , где P(x) = a0xn + a1xn-1 +…+an, Q(x) = b0xm + b1xm-1 +…+bm - многочлены. Тогда: Первый замечательный предел: Второй замечательный предел: Кроме трех, изложенных выше, пределов можно записать следующие полезные на практике соотношения: Непрерывность функции в точке. Определение. Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точке х0, если предел функции и ее значение в этой точке равны, т.е. Тот же факт можно записать иначе: Определение. Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 – точкой разрыва.
Пример непрерывной функции:
y
f(x0)+e f(x0) f(x0)-e 0 x0-D x0 x0+D x
Пример разрывной функции:
y f(x0)+e f(x0) f(x0)-e x0 x
Определение. Функция f(x) называется непрерывной в точке х0, если для любого положительного числа e>0 существует такое число D>0, что для любых х, удовлетворяющих условию верно неравенство . Определение. Функция f(x) называется непрерывной в точке х = х0, если приращение функции в точке х0 является бесконечно малой величиной. f(x) = f(x0) + a(x) где a(х) – бесконечно малая при х®х0. Свойства непрерывных функций. 1) Сумма, разность и произведение непрерывных в точке х0 функций – есть функция, непрерывная в точке х0. 2) Частное двух непрерывных функций – есть непрерывная функция при условии, что g(x) не равна нулю в точке х0. 3) Суперпозиция непрерывных функций – есть непрерывная функция. Это свойство может быть записано следующим образом: Если u = f(x), v = g(x) – непрерывные функции в точке х = х0, то функция v = g(f(x)) – тоже непрерывная функция в этой точке.
Непрерывность некоторых элементарных функций. 1) Функция f(x) = C, C = const – непрерывная функция на всей области определения. 2) Рациональная функция непрерывна для всех значений х, кроме тех, при которых знаменатель обращается в ноль. Таким образом, функция этого вида непрерывна на всей области определения. 3) Тригонометрические функции sin и cos непрерывны на своей области определения.
Точки разрыва и их классификация. Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0 является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной. Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом. Если односторонний предел (см. выше) , то функция называется непрерывной справа.
х0 Если односторонний предел (см. выше) , то функция называется непрерывной слева.
х0
Определение. Точка х0 называется точкой разрыва функции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке. Определение. Точка х0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы. Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х0, достаточно того, что она определена слева и справа от нее. Из определения можно сделать вывод, что в точке разрыва 1 – го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 – го рода еще иногда называют устранимой точкой разрыва, но подробнее об этом поговорим ниже. Определение. Точка х0 называется точкой разрыва 2 – го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен. Пример. Функция f(x) = имеет в точке х0 = 0 точку разрыва 2 – го рода, т.к. .
Пример. f(x) = Функция не определена в точке х = 0, но имеет в ней конечный предел , т.е. в точке х = 0 функция имеет точку разрыва 1 – го рода. Это – устранимая точка разрыва, т.к. если доопределить функцию: График этой функции:
Пример. f(x) = =
y
0 x
-1
Эта функция также обозначается sign(x) – знак х. В точке х = 0 функция не определена. Т.к. левый и правый пределы функции различны, то точка разрыва – 1 – го рода. Если доопределить функцию в точке х = 0, положив f(0) = 1, то функция будет непрерывна справа, если положить f(0) = -1, то функция будет непрерывной слева, если положить f(x) равное какому- либо числу, отличному от 1 или –1, то функция не будет непрерывна ни слева, ни справа, но во всех случаях тем не менее будет иметь в точке х = 0 разрыв 1 – го рода. В этом примере точка разрыва 1 – го рода не является устранимой. Таким образом, для того, чтобы точка разрыва 1 – го рода была устранимой, необходимо, чтобы односторонние пределы справа и слева были конечны и равны, а функция была бы в этой точке не определена.
Непрерывность функции на интервале и на отрезке. Определение. Функция f(x) называется непрерывной на интервале (отрезке), если она непрерывна в любой точке интервала (отрезка).
При этом не требуется непрерывность функции на концах отрезка или интервала, необходима только односторонняя непрерывность на концах отрезка или интервала. Свойства функций, непрерывных на отрезке. Свойство 1: Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [a, b] выполняется условие –M £ f(x) £ M. Свойство 2: Функция, непрерывная на отрезке [a, b], принимает на нем наибольшее и наименьшее значения. Т.е. существуют такие значения х1 и х2, что f(x1) = m, f(x2) = M, причем m £ f(x) £ M Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например – f(x) = sinx). Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке. Свойство 3: Функция, непрерывная на отрезке [a, b], принимает на этом отрезке все значения между двумя произвольными величинами. Свойство 4: Если функция f(x) непрерывна в точке х = х0, то существует некоторая окрестность точки х0, в которой функция сохраняет знак. Свойство 5: (Первая теорема Больцано (1781-1848) – Коши). Если функция f(x)- непрерывная на отрезке [a, b] и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f(x) = 0. Определение. Функция f(x) называется равномерно непрерывной на отрезке [a, b], если для любого e>0 существует D>0 такое, что для любых точек х1Î[a,b] и x2Î[a,b] таких, что ïх2 – х1ï< D верно неравенство ïf(x2) – f(x1)ï < e
Отличие равномерной непрерывности от “обычной” в том, что для любого e существует свое D, не зависящее от х, а при “обычной” непрерывности D зависит от e и х. Свойство 6: Функция, непрерывная на отрезке, равномерно непрерывна на нем. (Это свойство справедливо только для отрезков, а не для интервалов и полуинтервалов.) Пример. Функция непрерывна на интервале (0, а), но не является на нем равномерно непрерывной, т.к. существует такое число D>0 такое, что существуют значения х1 и х2 такие, чтоïf(x1) – f(x2)ï>e, e - любое число при условии, что х1 и х2 близки к нулю. Свойство 7: Если функция f(x) определена, монотонна и непрерывна на некотором промежутке, то и обратная ей функция х = g(y) тоже однозначна, монотонна и непрерывна.
Дата добавления: 2014-12-10; Просмотров: 618; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |