Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Перспектива развития аппаратных средств ПК




Одним из перспективных направлений развития аппаратных средств ПК является реализация, так называемых, мемристорных технологий. В основе этой технологии лежит четвёртый базовый элемент электросхемы, который описывает взаимосвязь магнитного потока с зарядом [25].

Как известно, электрическая цепь может описываться четырьмя физическими величинами: в каждой точке (сечении) — силой тока (I) и зарядом (Q), между двумя точками (поверхностями) — напряжением или разностью потенциалов (U) и магнитным потоком (Φ). Все эти четыре величины попарно соотносятся друг с другом, причём эти соотношения представлены в физических элементах электросхемы (рис.4.34).

 
 

 


Рис.4.34. Взаимосвязь физических величин электрической цепи.

Так, резистор (сопротивление) R реализует взаимосвязь силы тока и напряжения, конденсатор (ёмкость) C — напряжения и заряда, катушка индуктивности L — магнитного потока и силы тока. Эти три пассивных элемента — резистор, конденсатор и катушка индуктивности — считаются базовыми в электротехнике, поскольку электрическую схему любой сложности теоретически можно свести к эквивалентной схеме, построенной исключительно из сопротивлений, ёмкостей и индуктивностей.

В 1971 году американский физик Леон О. Чуа обосновал теорию, согласно которой был обоснован четвёртый базовый элемент электросхемы, который описывал бы взаимосвязь магнитного потока Ф с зарядом Q. Такой элемент невозможно составить из других базовых пассивных элементов.

Чуа назвал «недостающий» элемент мемристором — от слов «резистор» и «memory», то есть «память». Это название описывает одну из характеристик мемристора, так называемый гистерезис, «эффект памяти», означающий, что свойства этого элемента зависят от приложенной ранее силы. В данном случае сопротивление мемристора зависит от пропущенного через него заряда, что и позволяет использовать его в качестве ячейки памяти. Это свойство было названо мемристивностью (M), значение которой есть отношение изменения магнитного потока к изменению заряда. Величина M зависит от количества заряда, прошедшего через элемент, то есть от того, как долго через него протекал электрический ток.

У мемристорной памяти есть одно хорошо известное преимущество: она будет гораздо быстрее, чем обычная флэш-память. Это связано с тем, что время переключения мемристора из одного состояния в другое очень короткое, порядка нескольких наносекунд, в то время как запись информации в обычную флэш-память занимает порядка одной миллисекунды. То есть теоретически можно получить ускорение записи в 100 тысяч раз. Это будет очень быстрая память, которая сможет при этом хранить в несколько раз больше информации в том же объеме.

Принципиальное отличие мемристора от большинства типов современной полупроводниковой памяти и его главное преимущество перед ними заключаются в том, что он не хранит свои свойства в виде заряда. Это означает, что ему не страшны утечки заряда, с которыми приходится бороться при переходе на микросхемы нанометровых масштабов, и что он полностью энергонезависим. Проще говоря, данные могут храниться в мемристоре до тех пор, пока существуют материалы, из которых он изготовлен. Для сравнения: флэш-память начинает терять записанную информацию уже после года хранения без доступа к электрическому току.

Физически воспроизвести принципиально новый элемент электрических цепей удалось только в 2008 году, когда появились подходящие материалы и технологии.

Уже изученные свойства мемристоров позволяют говорить о том, что на их основе можно создавать компьютеры принципиально новой архитектуры, по производительности значительно превышающие полупроводниковые. Современные компьютеры построены на базе архитектуры фон Неймана: и данные, и программы хранятся в памяти машины в двоичном коде, причём вычислительный модуль отделён от устройств хранения, а программы выполняются последовательно, одна за другой. Прогрессивная в середине прошлого столетия, такая архитектура сегодня уже не отвечает требованиям, предъявляемым к компьютерной технике: программы стали намного сложнее, а объёмы обрабатываемых данных выросли на порядки, если не в десятки порядков.

Компьютер на базе мемристоров может стать существенным шагом вперёд, поскольку он способен моделировать работу человеческого мозга, в котором нет какого-то единого центра сбора и обработки информации. Каждый блок получает, перерабатывает и передаёт в другие блоки, на мышцы, органы чувств свои массивы данных, ничтожные по сравнению со всем объёмом поступающей информации. По недавним подсчётам, чтобы построить модель коры мозга человека из современных компьютерных комплектующих, потребуется как минимум 150 000 процессоров и 144 Тбайта одной только оперативной памяти, причём речь не идёт даже об интеллекте уровня младенца.

В мемристорном компьютере параллельно и независимо друг от друга работают множество модулей, а возможность запоминать и оперировать неограниченным множеством значений от 0 до 1 означает, что исполняемые программы не ограничены двоичным кодом. Более того, станут в принципе ненужными отдельные аппаратные компоненты компьютера – процессоры, видеочипы, память и жёсткие диски; машина будет архитектурно однородным устройством, где одновременно будут храниться все данные и проводиться все операции с ними. Для апгрейда достаточно будет установить дополнительные мемристорные модули, а для ремонта — заменить вышедшие из строя.

Мемристорный компьютер не надо будет «загружать»: сразу после включения он будет готов продолжить работу, причём с того самого места, на котором она была прервана. По сравнению с современной техникой, энергопотребление мемристорных машин будет ничтожным, а вычислительная мощь просто гигантской. Учитывая, что до серийного производства мемристоров остался буквально один шаг, очень может быть, что именно мемристорный компьютер станет промежуточной ступенью на пути к квантовому компьютеру.

Однако есть еще тонкости экономического плана, которые связаны с тем, что большие средства были инвестированы в заводы, производящие флэш-память. Сперва эти средства должны окупиться, и потом уже можно будет строить новое производство.

 




Поделиться с друзьями:


Дата добавления: 2014-12-10; Просмотров: 1434; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.