Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Куда бежит магнитное поле?




 

Как ни хороши были электромоторы постоянного тока, применяемые, кстати, и сейчас во многих случаях, но не всем. Очень ненадежен был узел коллектора со щетками: он искрил, часто выходил из строя, да и стоил недешево. Это побудило ученых искать способ «бесколлекторной» работы моторов и генераторов, и такой способ был найден. Это помогли сделать переменный ток и бегущее магнитное поле.

Поначалу, когда ток получали от гальванических батарей, о переменном токе и не слыхали. Но знаменитый опыт Фарадея позволил получить именно переменный ток: когда магнит начинали вдвигать в катушку, ток возникал, а потом, при прекращении движения магнита, ток прекращался. Если двигать магнит туда-сюда непрерывно, получаем самый настоящий переменный ток, причем без каких-либо коллекторов, прямо от катушки. Это хорошо, но есть и неудобства – не очень-то просто двигать магнит туда-сюда, гораздо легче вращать его (рис. 372).

 

Рис. 372. Схема простейшего генератора переменного тока; при вращении рамки между полюсами магнитов в ней возникает переменный ток

 

Так и было сделано. Взяли три катушки с сердечниками, расположили их по кругу под углом 120°, а внутри круга стали вращать магнит – постоянный или электрический, что, впрочем, дает один и тот же результат. При приближении полюса магнита к катушке в ней возникал (индуцировался) ток, точно так же, как в опыте Фарадея. Магнит можно было вращать очень быстро, что позволяло получать достаточно большие токи. Так был изобретен генератор переменного трехфазного тока – каждая катушка давала свою фазу (рис. 373). Ток в этих фазах возрастал и падал попеременно, тоже со сдвигом 120°. Что касается мотора, который можно питать таким трехфазным током, то он принципиально ничем не отличается от генератора. Такие же катушки, такой же магнит – ротор. Катушки генератора соединяются проводами (можно за тысячи километров!) с катушками мотора, и происходит следующее.

 

Рис. 373. Схема генератора трехфазного тока

 

Когда полюс магнита генератора проходит мимо какой-либо катушки, в ней возникает наибольший ток, который намагничивает соответствующую катушку мотора. Именно к этой катушке стремится тот же полюс магнита мотора, и если ему не очень мешать, то он будет в точности повторять вращение магнита генератора. Мы получили синхронный мотор (двигатель), т. е. такой, в котором ротор-магнит движется синхронно ротору-магниту генератора (рис. 374). В некоторых случаях, когда, например, нужно точно передать поворот вала генератора на большое расстояние, такой мотор очень полезен. Но чаще всего вращение ротора-магнита встречает большие сопротивления, и он может остановиться, сбиться с ритма.

 

Рис. 374. Магнитная стрелка вращается туда же, куда вращается магнит, – это принцип работы синхронных моторов

 

Чтобы этого не случалось, русский электротехник М. О. Доливо-Добровольский в 1888 г. придумал несинхронный, или, как его сейчас называют, асинхронный мотор, где ротор может отставать от вращающегося магнитного поля. Представим себе, что вместо постоянного магнита ротор состоит из катушки, совсем такой, как у мотора постоянного тока, только с накоротко замкнутым коллектором. Собственно говоря, коллектор тут просто не нужен, а витки катушки можно настолько упростить, что выполнять их в виде стержней, соединенных кольцами по концам. Конструкция такого ротора получила самое большое распространение и была названа короткозамкнутой, так как действительно каждый стержень-виток ее замкнут накоротко (рис. 375, а). И еще из-за поразительного внешнего сходства такого ротора с беличьим колесом-клеткой, которая тоже вращается, когда белка бежит по ней, ротор так и назвали – беличье колесо (рис. 375, б, в, г). Эти два названия одинаково прижились к ротору асинхронной машины, чрезвычайно широко распространенной в технике. Реже встречаются машины, где ротор действительно имеет обмотки-катушки.

 

 

Рис. 375. Ротор асинхронного двигателя: а – принцип действия; б – тело ротора; в – беличье колесо; г – ротор в сборе

 

Итак, вращающееся магнитное поле неподвижных катушек-статора мотора начинает индуцировать электричество в обмотках или стержнях неподвижного ротора, превращая их в электромагниты. Те, в свою очередь, ведут себя так, как и положено вести себя магниту-ротору, – он увлекается магнитным полем статора и начинает вращаться.

Вот тут-то и видна разница между синхронным и асинхронным моторами. Если в первом магнит-ротор точно повторяет вращение магнитного поля, то во втором такое повторение в принципе невозможно. Если ротор с обмотками станет вращаться с той же скоростью, что и магнитное поле, то наступит момент, когда в обмотках уже не будет индуктироваться ток, так как не будет относительного движения магнитного поля и обмоток. Ротор тогда, полностью размагнитившись, начинает отставать от вращающегося магнитного поля, но не тут-то было. При отставании снова начинается относительное вращение ротора и поля, снова ротор становится магнитом и снова начинает догонять магнитное поле.

 

В результате ротор асинхронного мотора всегда отстает от вращающегося магнитного поля, и это отставание тем больше, чем больше сопротивление вращению ротора. А в целом это отставание невелико и для короткозамкнутых моторов не превышает нескольких процентов. Схема подключения в сеть и основные детали асинхронного электродвигателя показаны на рис. 376.

 

Рис. 376. Схема включения трехфазного электродвигателя в сеть (а) и основные детали этого электродвигателя (б)

 

Статор может быть и цилиндрическим, и кольцевым. Можно «разрезать» беличье колесо, выпрямить его, расположив вдоль прямой, совсем как рельсы со шпалами. Шпалы в этом случае будут играть роль стержней, а рельсы – замыкающих их колец. Поставим на эти рельсы тележку, в которой установим катушки точно так же разрезанного и выпрямленного статора. Пустим ток в катушки статора, и получим уже не вращающееся, а бегущее магнитное поле, которое будет стремиться сдвинуть вперед или назад шпалы-стержни выпрямленного ротора. А так как сдвинуть путь всегда труднее, чем поехать самому по этому пути, то тележка с катушками поедет по пути, движимая бегущим магнитным полем.

Так был создан линейный электродвигатель, получивший большое распространение сейчас и очень перспективный для будущего – ведь все поезда на магнитной подвеске приводятся в движение именно линейными электродвигателями, и так предполагается в будущем. Линейные электродвигатели движут скоростные лифты небоскребов, точные механизмы перемещения станков, разгоняют самолеты для их ускоренного запуска с кораблей-авианосцев.

 




Поделиться с друзьями:


Дата добавления: 2014-12-10; Просмотров: 634; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.