КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Операции, не поддерживаемые POSIX
В native QNX API есть ряд функций работы с мьютексом, которые не определены POSIX-стандартом, однако они могут оказаться весьма полезными. Поскольку тип POSIX-мьютекса порождается от sync_t, то вполне возможно использование комбинации функций, определенных POSIX, и «родных» native-функций QNX. Однако необходимо помнить, что в таком случае ни о какой межсистемной совместимости говорить уже не приходится. Восстановление «мертвого» мьютекса #include <sys/neutrino. h>. int SyncMutexRevive(sync_t* sync); int SyncMutexRevive_r(sync_t* sync); Эти функции[8] предназначены для восстановления мьютекса, который находится в состоянии блокирования DEAD. Мьютекс попадает в состояние DEAD, когда память, использованная при захвате мьютекса, освобождается. Такое может произойти, например, когда умирает поток, захвативший мьютекс, расположенный в разделяемой памяти. В результате вызова вызвавший поток становится владельцем мьютекса, и его счетчик захватов устанавливается в 1 для рекурсивного мьютекса. Ошибки выполнения функции: EFAULT - ошибка при обращении к указанным в аргументах переменным; EINVAL - указанный объект синхронизации не существует или не находится в состоянии DEAD; ETIMEDOUT - отмена вызова по тайм-ауту ядра (устанавливается вызовом TimerTimeout()). Установка уведомления о «смерти» мьютекса Определить состояние мьютекса как DEAD можно с помощью функции SyncMutexEvent(), которая определяет событие, связанное со «смертью» мьютекса. #include <sys/neutrino.h> int SyncMutexEvent(sync_t* sync, struct sigevent* event); int SyncMutexEvent_r(sync_t* sync, struct sigevent* event); Данная функция предназначена для установки обработчика ситуации, когда мьютекс попадает в состояние DEAD (то есть перераспределяется память, из которой произошел захват мьютекса). Захватить мьютекс, оказавшийся в состоянии DEAD, можно далее с помощью вызова функции SyncMutexRevive(). int SyncMutexEvent(sync_t* sync, struct sigevent* event); int SyncMutexEvent_r(sync_t* sync, struct sigevent* event); Данная функция предназначена для установки обработчика ситуации, когда мьютекс попадает в состояние DEAD (то есть перераспределяется память, из которой произошел захват мьютекса). Захватить мьютекс, оказавшийся в состоянии DEAD, можно далее с помощью вызова функции SyncMutexRevive(). Ошибки выполнения функции: EAGAIN - в данный момент ядро не имеет ресурсов для обработки запроса; EFAULT - ошибка произошла при попытке обращения к sync; EINVAL - объект синхронизации, на который указывает sync, не существует. Пример применения мьютекса Модернизируем наш пример из раздела, посвященного использованию семафора для случая множества потоков источников и приемников данных. Проблема заключается в том, что когда несколько потоков одновременно попытаются вызвать функцию push() или рор(), может произойти сильная путаница, поэтому код этих функций должен исполняться эксклюзивно, только одним потоком. Решить эту проблему можно двумя способами: воспользоваться бинарным семафором или мьютексом. Мы решили применить именно мьютекс и ниже расскажем причину, по которой мы здесь смешали в одной конструкции эти два элемента синхронизации. /* Шаблонный класс очереди данных */ template <class Т> class CdataOueue { public: CmessageQueueO { pthread_mutex_init(&_mutex, NULL); }; CmessageQueue() { pthread_mutex_destroy(&_mutex);}; void push(у _-iew_da:a; { pthread_mutex_lock(&_mutex); data_queue.push(_new_data): data_event. reset(); pthread_mutex_unlock(&_mutex); }; T pop() { data_event.wait(); pthread_mutex_lock(&_mutex); T res = data_queue.front(); data_queue.pop(); pthread_mutex_unlock(&_mutex); return res; }; private: std::queue<T> data_queue;. event data_event; pthreadjnutex_t _mutex; } На первый взгляд задача очевидна: надо не допустить одновременного исполнения двух участков кода. Почему же не воспользоваться семафором, как мы описывали, когда рассказывали о способах его применения? Дело в том, что мы хотели получить универсальное средство передачи данных между потоками, не зависящее от допущений о приоритетах потоков и степени их зависимости. Когда мы строим систему реального времени, вопрос взаимного неявного влияния разных потоков на выполнение друг друга становится очень важным. Мы уже неоднократно упоминали эффект инверсии приоритетов и те способы, которыми можно ее избежать, используя мьютекс для защиты эксклюзивно используемого кода.
Дата добавления: 2014-12-10; Просмотров: 411; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |