КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теории непрямого действия ионизирующих излучений
При косвенном действии ионизирующих излучений наиболее выражен процесс радиолиза (радиационного разрушения) воды, потому что вода составляет основу важнейших структур клетки (80...90 %). Именно в воде растворены белки, нуклеиновые кислоты, ферменты, гормоны и другие жизненно важные вещества, являющиеся основными компонентами клетки, которым легко может быть передана энергия, первоначально поглощенная водой. Процесс радиолиза воды совершается в три фазы: в физическую — длится 10-13...10-16 с; в фазу первичных физико-химических превращений — 10-6...10-9с; в фазу химических реакций — 10-5...10-6с. Физическая фаза по существу — один из моментов прямого действия ионизирующего излучения на молекулярные и биологические структуры клетки. В физическую фазу происходит взаимодействие ИИ с молекулой воды, в результате чего выбивается электрон с внешней орбиты атома и образуется положительно заряженный ион воды: γ→H2O→ē + H2O+. «Вырванный» электрон присоединяется к нейтральной молекуле воды, образуя отрицательный ион воды: ē + H2O→ H2O-. При эффекте возбуждения образуется нейтрально заряженная молекула воды с избытком энергии, привнесенной ионизирующим излучением: γ→H2O→ H2O*. Физико-химические свойства ионизированных и возбужденных молекул воды будут отличаться от молекул воды электрически нейтральных. Продолжительность существования таких молекул очень короткая; они распадаются (диссоциируют), образуя высокореактивные свободные радикалы водорода и гидроксила (Н ∙ и ОН ∙); наступает вторая фаза радиолиза воды — фаза первичных физико-химических реакций: H2O+ → Н+ + ОН ∙, H2O- → Н ∙ + ОН-, H2O*→ Н ∙ + ОН ∙. Гидроксильные радикалы (ОН ∙) — сильные окислители, а радикал водорода (Н ∙) — восстановитель. Образование свободных радикалов может идти и другим путем. Вырванный из молекулы воды под, действием излучения электрон может присоединиться к положительно заряженному иону воды с образованием возбужденной молекулы:: ē + H2O+→ H2O*. Избыточная энергия этой молекулы расходуется на ее расщепление с образованием свободных радикалов водорода и гидроксила: H2O*→ Н ∙ + ОН ∙. Ионизированная молекула воды (Н2О+) может реагировать с другой нейтральной молекулой воды (Н2О), в результате чего образуется высокореактивный радикал гидроксила (ОН ∙): H2O+ + Н2О →H3O+ + ОН ∙. На этом заканчивается физико-химическая фаза и развивается третья фаза действия ИИ — фаза химических реакций. Обладая очень высокой химической активностью за счет наличия неспаренного электрона, свободные радикалы взаимодействуют друг с другом или с растворенными в воде веществами. Реакции могут идти следующими путями: рекомбинация, восстановление воды, Н ∙ + ОН ∙ →H2O, образование молекул водорода, Н ∙ + Н ∙ → Н2, образование молекул воды и выделение кислорода, который является сильным окислителем, ОН ∙ + ОН ∙ →H2O + O, образование пероксида водорода, ОН ∙ + ОН ∙ →H2O2. При наличии в среде растворенного кислорода О2 возможна реакция образования гидропероксидов: Н ∙ + О2→HO2 ∙ (гидропероксидный радикал). Эта реакция указывает на роль кислорода в повреждающем эффекте ионизирующего излучения. Гидропероксиды могут взаимодействовать между собой, образуя пероксиды водорода и высшие пероксиды, которые обладают высокой токсичностью, но они очень быстро разлагаются в организме ферментом каталазой на воду и кислород: HO2 ∙ + HO2 ∙ →H2O2 + О2; HO2 ∙ + HO2 ∙ →H2O4 (высший пероксид); HO2 ∙ + Н ∙ → H2O2. Появление свободных радикалов и их взаимодействие, составляют этап первичных химических реакций воды и растворенных в ней веществ, а в случаях облучения животных и растений — и биологических молекул. Взаимодействие свободных радикалов с органическими и неорганическими веществами идет по типу окислительно-восстановительных реакций и составляет эффект непрямого (косвенного) действия. Величина прямого и непрямого действия в первичных радиобиологических эффектах различных систем неодинаковая. В абсолютно чистых сухих веществах будет преобладать прямое, а в слабо-растворенных — косвенное действие радиации. У животных, поданным А. М. Кузина, примерно 45 % поглощенной энергии излучения действует непосредственно на молекулярные структуры — прямое действие, а остальные 55 % энергии вызывают непрямое действие. О различии прямого и косвенного действия радиации на биологические объекты и величине их влияния на развитие лучевого поражения, по мнению авторов теории, можно судить по двум феноменам — эффекту разведения и кислородному эффекту. Эффект разведения — состояние, при котором абсолютное число поврежденных молекул веществ в слабом растворе не зависит от его концентрации и остается для данной экспозиционной дозы постоянным, так как в этих конкретных условиях в растворе образуется постоянное количество активированных радикалов. Кислородный эффект. С повышением концентрации кислорода в окружающей среде и объекте облучения усиливается эффект лучевого поражения, и, наоборот, при понижении концентрации кислорода наблюдается уменьшение степени лучевого поражения. Выраженность кислородного эффекта у разных видов излучений неодинаковая и зависит от их линейной потери энергии (ЛПЭ); с повышением ее эффект уменьшается. При действии излучений с малой плотностью ЛПЭ (гамма- и рентгеновские. лучи) наблюдается наибольший эффект, а при воздействии излучений с высокой ЛПЭ (альфа-частицы) он полностью отсутствует. Кислородный эффект проявляется во всех радиобиологических реакциях ослаблением или усилением биохимических изменений, мутаций у всех биологических объектов (растений и животных) и на всех уровнях их организации — молекулярном, субклеточном, клеточном, тканевом. В присутствии кислорода происходит значительное усиление косвенного действия продуктов радиолиза воды и низкомолекулярных органических соединений. Свободные радикалы, взаимодействуя с кислородом, образуют гидропероксиды, пероксиды и высшие пероксиды, которые оказывают токсическое действие на организм. Стабилизация радикалов ОН ∙ в присутствии кислорода увеличивает вероятность образования активных свободных радикалов органических веществ, которые присутствуют в облучаемой среде: RH + ОН ∙ →R ∙ + Н2О. Образовавшиеся свободные радикалы органических веществ в присутствии кислорода будут реагировать с ним, образуя пероксидный радикал (ROO ∙), который, в свою очередь, реагируя с любым органическим веществом или молекулами воды, инициирует цепную реакцию образования активных свободных радикалов и гидропероксидов, оказывающих токсическое действие на клетку: R ∙ + О2→ ROO ∙, ROO ∙ + Н2О → ROOH + ОН ∙, ROO ∙ + R1H(орг. в-во) → ROOH + R1 ∙. Наличие кислорода в облучаемой среде усиливает также прямое действие радиации. При попадании γ-кванта в молекулу органического вещества, так же как и в случае с водой, образуются активные радикалы в результате ионизации и возбуждения молекул: γ ~~→ RH + ē → R ∙ + Н+, γ ~~→ RH→ RH*→ R ∙ + Н ∙. Эти радикалы, взаимодействуя с кислородом, образуют гидропероксиды и пероксиды, которые приводят к глубокому изменению молекул: Н ∙ + О2 → HO2 ∙ ( гидропероксид); R ∙ + О2→ ROO ∙ ( пероксидный радикал органического вещества). Кроме того, липиды биомембран под действием ИИ в присутствии кислорода образуют пероксиды и продукты их распада (малоновый альдегид и др.). Таким образом, в кислородной среде образуется больше токсических веществ; их концентрация выше, чем объясняет кислородный эффект. Существует целый ряд гипотез, отражающих преимущественно непрямое действие ионизирующих излучений, т. е. качественную сторону возникновения и развития послелучевых процессов в организме. Теория липидных радиотоксинов (первичных радиотоксинов и цепных реакций). Впервые часы после облучения в тканях животных образуются вещества, которые при последующем введении их интактным животным вызывают гемолиз. Идентификация веществ установила их липидную природу, что дало основание назвать их липидными радиотоксинами (ЛРТ). Липидные радиотоксины представляют собой лабильный комплекс продуктов окисления ненасыщенных кислот, гидропероксидов, альдегидов, эпоксидов и кетонов. Они вызывают - гемолиз, -торможение клеточного деления, -нарушение кроветворения, -повреждение хромосомного аппарата и др. Для осуществления цепных реакций необходимы радикалы с большой энергией, достаточной для образования последующих радикалов. В случаях, когда на один радикал образуются два или три, возникает самоускоряющийся процесс, который называют реакцией с разветвленными цепями. В организме животных в нормальных условиях низкий уровень окисления биолипидов обусловливают антиокислители — природные антиоксиданты. При лучевом воздействии такое равновесие нарушается вследствие появления большого количества радикалов. Автокаталитический режим цепных реакций возникает в случаях, когда содержание естественных антиокислителей уменьшается на 10... 15 % (А. И. Журавлев). По мере уменьшения числа реакционноспособных молекул в субстрате реакция затухает; при этом снижается количество радикалов и пероксидов и увеличивается выход конечных продуктов По мнению авторов гипотезы, при облучении вначале поражаются липиды клеточных мембран, что приводит к нарушению химизма клетки, а затем образующиеся липидные радиотоксины вызывают окисление молекул других органических соединений живой ткани. “Минусы” теории - накопление липидных радиотоксинов количественно не связано с ЛПЭ, а ЛПЭ в основном определяет ОБЭ ионизирующего излучения.
Дата добавления: 2014-12-10; Просмотров: 880; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |