КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пути уменьшения неопределенностей
Неопределенность уменьшается при разработке и анализе альтернативных вариантов, дополнительном анализе неопределенных факторов (сбор и обработка недостающих исходных данных, выявление среди множества стратегий применения бесперспективных и определение расчетных), изменении параметров системы по мере ее разработки (в том числе принятие гибких технических решений). Одним из путей снятия неопределенностей объектов, на которые направлены действия систем, действий реального противника или партнера является выбор наихудших параметров объектов, стратегий и условий применения, что дает возможность использовать проектируемую систему во всем рассматриваемом диапазоне стратегий и условий применения. Этот подход неизбежно приводит к исследованию частоты наступления наихудших параметров объектов обслуживания, стратегий и условий применения и последующего принятия решения о необходимости их реализации рассматриваемой системой. Неопределенность может быть учтена при равнозначимом анализе, который предполагает: - определение частных производных критерия эффективности по неопределенным параметрам, - выделение групп параметров равного влияния, ранжированием групп в порядке убывания их влияния - выделение значимой части той или иной неопределенности, исследование влияния "малых" неопределенностей на критерий эффективности. Например, ограничение числа стратегий применения системы проводится на основе сопоставления степени влияния каждой стратегии и неопределенных параметров на эффективность. Если влияние стратегии применения сопоставимо с влиянием неопределенности самих параметров, то такие стратегии могут не рассматриваться. Один из путей снятия неопределенности - предусмотреть возможность изменения (адаптации) параметров системы в зависимости от будущих конкретных ситуаций - выбор гибких технических решений, которые могут обеспечивать наиболее рациональное сочетание параметров при уточнении неопределенных факторов. Обоснованный выбор таких решений возможен на основе исследования эффективности систем в условиях неопределенности их применения. Основные требования к модели процесса функционирования Основные требования, предъявляемые к модели процесса функционирования системы. 1. Полнота модели должна предоставлять исследователю возможность получения необходимого набора оценок характеристик системы с требуемой точностью и достоверностью. 2. Гибкость модели должна давать возможность воспроизведения различных ситуаций при варьировании структуры, алгоритмов и параметров системы. 3. Структура модели должна быть блочной, т.е. допускать возможность замены, добавления и исключения некоторых частей без переделки всей модели. 4. Информационное обеспечение должно предоставлять возможность эффективной работы модели с базой данных систем определённого класса. 5. Длительность разработки и реализации модели системы должна быть по возможности минимальной при учёте ограничений на имеющиеся ресурсы. 6. Программные и технические средства должны обеспечивать эффективную (по быстродействию и памяти) машинную реализацию модели и удобное общение с ней пользователя. 7. Должно быть реализовано проведение целенаправленных (планируемых) машинных экспериментов с моделью системы с использованием аналитико-имитационного подхода при наличии ограничений. При компьютерном моделировании системы характеристики процесса ее функционирования определяются на основе модели, построенной исходя из имеющейся исходной информации об объекте моделирования. При получении новой информации об объекте его модель пересматривается и уточняется, т.е. процесс моделирования является итерационным. Этот итерационный процесс продолжается до тех пор, пока не будет получена модель, которую можно считать адекватной в рамках решения поставленной задачи исследования и проектирования системы. Моделирование систем на ЭВМ при синтезе системы (проектировании) целесообразно использовать в следующих случаях: - для исследования системы до того, как она спроектирована, с целью оценки эффективности будущей системы, а также определения чувствительности характеристик системы к изменениям структуры, алгоритмов и параметров объекта моделирования и внешней среды; - на этапе проектирования системы для анализа и синтеза различных вариантов системы и выбора среди конкурирующих такого варианта, который удовлетворял бы заданному критерию оценки эффективности системы при принятых ограничениях; - после завершения проектирования и внедрения системы, т.е. при её эксплуатации, для получения информации, дополняющей результаты натурных испытаний реальной системы, и для получения прогнозов эволюции системы во времени. Анализ функционирования, анализ структуры технической системы Исследование структуры системы - анализ структуры является той частью общей задачи построения системы, которая выявляет ее конфигурацию, обеспечивающую функционирование системы. Это могут быть исследования отношений между элементами системы или исследования структурной схемы системы в целом. Структурный анализ – исследование структурных свойств системы исходя из заданных описаний элементов и связей. При моделировании в целях структурного анализа (как и систем вообще) используются различные модели, отображающие: • функции, которые система должна выполнять; • процессы, обеспечивающие выполнение указанных функций; • данные, необходимые при выполнении функций; • организационные структуры, обеспечивающие выполнение функций; • материальные и информационные потоки. В основе структурного моделирования – совместное применение методов анализа и синтеза. В результате синтеза как завершающего этапа процесса «анализ – синтез» можно объяснить целое через его части – в виде структуры целого. Единство анализа и синтеза как основа системного анализа относится ко всем отраслям знаний, в т.ч. к моделированию. Алгоритмов «анализа – синтеза» как известно, нет – определена только общая методология (как выполняются операции анализа и синтеза). Как разделить модель на подмодели, как построить иерархию моделей для исследования элементов (декомпозиция) и как их потом объединить для исследования системы в целом, чтобы объяснить целое через частности – основная проблема моделирования. Исследование структуры системы - анализ структуры является той частью общей задачи построения системы, которая выявляет ее конфигурацию, обеспечивающую функционирование системы. Это могут быть исследования отношений между элементами системы или исследования структурной схемы системы в целом. Общая задача структурного системного анализа состоит в том, чтобы исходя из заданного описания элементов системы и непосредственных связей между ними, получить заключение о структурных свойствах системы в целом и основных её подсистем. Анализ функционирования системы и анализ ее структуры - две взаимосвязанные стадии исследования (поскольку связаны между собой структурные и функциональные свойства системы): зная законы функционирования отдельных элементов, но не зная структуры системы, нельзя представить систему как целое и понять, как она функционирует. Формирование модели структурной схемы (наряду с моделью функционирования) является частью решения общей задачи структурного анализа системы и строится исходя из целей и задач структурного анализа. Структурный анализ является составной частью функционально стоимостного анализа. Под функционально стоимостным анализом понимают метод системного анализа функций объекта (технологического процесса, производства, системы управления), направленный на поиск технико-экономических резервов объекта с целью повышения его эффективности. По своему содержанию – это комплексная программа, объединяющая функционально-физический, технико-экономический анализ, организационно-технические мероприятия. Главный экономический принцип – стоимостная оценка функций объекта, новых решений и альтернативных вариантов, реализующих эти функции. Функционально – физический анализ технических объектов. Технический объект разделяется на элементы, каждый из которых имеет вполне определенную функцию по обеспечению работы объекта или его элементов. Элементарная физическая операция может быть реализована с помощью одного физико-технического эффекта. Предельное разделение объекта возможно до неделимых элементов с минимальным числом функций. Среди всех элементов особое внимание уделяется главным элементам (обозначается Е0). Элементы объекта обозначаются Е0,Е1,... ЕN. Цель функционально-физического анализа - определение, на основе каких физико-технических эффектов работает каждый элемент, анализ функций и физических операций (преобразований) и как элементы функционально связаны между собой. Конструктивная функциональная структура представляет собой ориентированный граф, вершинами которого являются наименования элементов, ребрами — функции элементов. Функционально – физический анализ направлен на изучение: - функций каждого элемента технического объекта и функциональных связей элементов между собой; - физических операций (преобразования) каждого элемента технического объекта и как элементы функционально связаны между собой; - физико-технических эффектов, законов, зависимостей на основе которых работает каждый элемент технического объекта и как они взаимосвязаны между собой. Построение конструктивной функциональной структуры является первым этапом функционально – физического анализа Любой технический объект можно разделить на несколько элементов каждый из которых имеет вполне определенную функцию по обеспечению работы объекта или его элементов. Предельное разделение возможно до неделимых элементов с минимальным числом функции. Конструктивная функциональная структура представляет собой ориентированный граф, вершинами которого являются наименования элементов объекта, а ребрами — функции элементов. Аналогично анализу функций технического объекта может быть проведен анализ технологических процессов. При этом для технологических процессов функциональная структура представляет собой граф вершинами которого являются обрабатываемые объекты, а ребрами элементарные операции с указанием режимов обработки. Технология или процесс - способ, метод или программа преобразования вещества, энергии или информации из заданного начального состояния в заданное конечное состояние с помощью определённых технических объектов. Функциональная структура представляет собой граф, вершинами которого являются наименования элементов объекта или наименования операций, а ребрами - входные АТ и выходные СТ потоки (факторы). Технический объект или соответствующие человеко-машинные системы состоят из четырех типов подсистем (элементов) S1, S2, S3, S4, реализующих соответственно четыре типовые функции: S1 (Ф1) – подсистема, реализующая технологическую функцию - обеспечивает превращение исходного материала А0 в конечный продукт Ак . S2 (Ф2) – подсистема, реализующая энергетическую функцию – превращает вещество или извне полученную энергию W0 в конечный вид энергии Wк необходимый для реализации функции Ф1. S3 (Ф3) – подсистема, реализующая функцию управления - осуществляет управляющие воздействия U1, U2 на подсистемы S1,S2 в соответствии с заданной программой Q и полученной информацией U10,U20 о количестве и качестве выработанных конечного продукта Ak и конечной энергии WK. S4 (Ф4) –- подсистема, реализующая функцию планирования - собирает информацию Q0 о произведенном конечном продукте Ak и определяет потребные Q качественные и количественные характеристики конечного продукта. поток вещества поток энергии; поток управляющих сигналов и воздействий
Функциональная структура преобразования энергии и информации. Для одной системы может быть сформировано множество различных взаимосвязанных между собой компонентов структуры (подструктур). Например, в структуре общества имеются экономическая, политическая, социальная и другие тесно взаимосвязанные подструктуры. Аналогично анализу функций технического объекта может быть проведен анализ технологических процессов. При этом для технологических процессов функциональная структура представляет собой граф вершинами которого являются обрабатываемые объекты, а ребрами элементарные операции с указанием режимов обработки. Множественности структур системы: переход к структуре системы может быть осуществлен только при условии, что найдены элементы и их устойчивые отношения. Причем, как правило, существует большое число критериев, по которым выбираются составляющие систему элементы. Структурная и функциональная модели дополняют и соответствуют друг другу – каждому элементу приписывается функция, каждую функцию выполняет элемент. Структурно-функциональная модель описывает элементы, связи и присущие им функции. Элементы (или подсистемы) связаны структурными соотношениями (могут быть представлены в виде схем, карт, диаграмм), которым соответствуют функции. Помимо функциональных модулей, в структурную схему могут включаться логические блоки, позволяющие изменять характер функционирования в зависимости от того, выполняются или нет некоторые заранее заданные условия. Структурно-функциональные модели – статические модели – они, не описывают процесс функционирования системы (зависимость изменения свойств системы от времени, начальных и граничных условий). В зависимости от задач исследования системы в понятие структуры включаются различные аспекты функционирования системы. Пример. Структура производственной системы – устойчивое пространственно-временное распределение хозяйственных решений и обеспечивающих их реализацию ресурсов с соответствующими взаимосвязями. Структура производства – определение множества устройств (элементов) и распределение задач между ними для производства технической системы. Структура организационной системы – форма распределения задач и полномочий по принятию решений лицами (группами лиц – подразделениями), составляющих организационную систему (организацию), направленная на достижение целей, стоящих перед организацией. Каждый объект или связь имеет также набор характеристик, при помощи которых можно задать количественные и качественные характеристики моделируемых элементов. При анализе организационной структуры производственно-экономической системы решаются следующие задачи: описание состава организации и построение её структурной схемы; определение функций отдельных подразделений, раскрытие их структурной схемы; описание материальных, вещественных и информационных связей; построение обобщённой структурной информационной модели предприятия; При анализе функциональной структуры решаются задачи: изучаются функции управления в структурных подразделениях существующей системы; выбирается состав автоматизированных функций; определяются их взаимосвязи; составляется обобщённая функциональная структура задач управления АСУП; При анализе технической структуры решаются задачи: определяются основные элементы, участвующие в основных информационных процессах: регистрации и подготовки информации, сборе и передаче, хранении и обработке, воспроизведении и выдаче информации; составляется формальная структурная модель системы технических средств с учётом топологии расположения элементов и энергетического взаимодействия их как между собой, так и с внешней средой. Формирование модели структурной схемы (наряду с моделью функционирования) является частью решения общей задачи структурного анализа системы и строится исходя из целей и задач структурного анализа. Общая задача структурного системного анализа состоит в том, чтобы исходя из заданного описания элементов системы и непосредственных связей между ними, получить заключение о структурных свойствах системы в целом и основных её подсистем. В основе структурного анализа лежит выявление структуры как относительно устойчивой совокупности отношений, признание методологического примата отношений над элементами в системе, частичное отвлечение от развития объектов. Содержательная модель структуры предполагает описания: состав системы (перечень элементов), направления связей, типы связей (материальная, энергетическая, информационная). Основная сложность при этом – обоснование числа связей, наиболее существенных для целей моделирования. Анализ функционирования системы и анализ ее структуры - две взаимосвязанные стадии исследования (поскольку связаны между собой структурные и функциональные свойства системы): зная законы функционирования отдельных элементов, но не зная структуры системы, нельзя представить систему как целое и понять, как она функционирует. Структурно-функциональная модель описывает элементы, связи и присущие им функции. Элементы (или подсистемы) связаны структурными соотношениями (могут быть представлены в виде схем, карт, диаграмм), которым соответствуют функции. Помимо функциональных модулей, в структурную схему могут включаться логические блоки, позволяющие изменять характер функционирования в зависимости от того, выполняются или нет некоторые заранее заданные условия. Структурно-функциональные модели – статические модели – они, не описывают процесс функционирования системы (зависимость изменения свойств системы от времени, начальных и граничных условий). Функциональные, геометрические и функционально-геометрические модели отражают соответственно только функциональные, только пространственные и одновременно функциональные и пространственные свойства оригинала. Модель строится в виде логической структурной схемы системы по модульному принципу - в виде совокупности стандартных блоков-модулей. При этом можно строить и совершенствовать модель итерационным методом, добавляя к основной схеме блок за блоком. Каждая модель может быть разделена на блоки, а блоки — на подблоки. Этот процесс деления блоков на подблоки продолжается до необходимого уровня детализации описания системы. Таким образом, модель функционально подразделяется на подмодели.
Дата добавления: 2014-11-29; Просмотров: 920; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |