Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общие вопросы измерения давления




Измерение давления

Из всех параметров наиболее измеряемым является давление. Давление – одна из основных величин, связанных с описанием поведения жидких и газообразных сред. В нефтегазовом комплексе измерение давления в трубопроводах и хранилищах используется очень широко. Так, для контроля за целостностью нефте- и газопроводов и отсутствием несанкционированного доступа к ним используется непрерывный контроль за давлением в трубопроводной системе. При наличии изменения давления в какой-либо части трубопровода ниже или выше нормы он блокируется.

Еще одним характерным примером использования датчиков давления, в которых масса газа определяется по давлению в емкости, является отпуск газа, например, на газозаправочных станциях. Значительную часть выпускаемых промышленностью датчиков давления использует энергетика. В гидравлических, тепловых, ядерных и других энергетических установках необходим непрерывный контроль за давлением для обеспечения нормального режима работы, не говоря уже о риске разрыва стенок резервуаров и трубопроводов и возникновения аварийных ситуаций. В системах контроля за технологическими процессами датчики давления дают информацию о давлении сжатого воздуха, газа, пара, масла и других жидкостей, обеспечивающих надлежащее функционирование машин, механизмов, и о правильном протекании ТП.

Таким образом, необходимо более подробно рассмотреть методы измерения именно давления. Все задачи измерения давления можно разделить на следующие основные группы:

­ измерение абсолютного или избыточного давления;

­ измерение разности давлений;

­ измерение абсолютного давления газов;

­ измерение параметров звуковых волн в газовой и жидкостной среде (акустические измерения).

 

Большое разнообразие аппаратуры, в том числе и датчиковой, для измерения давлений объясняется тем, что понятие «давление» охватывает протяженную область значений – от сверхвысокого вакуума до сверхвысоких избыточных давлений. Оценивать величину давления можно как в абсолютных, по отношению к вакууму, так и в относительных, по отношению к атмосферному давлению, единицах; кроме того, результат измерения может быть разностью двух произвольных величин – двух разных давлений. Наконец, измерение давления может проводиться в различных средах, физические и химические характеристики которых весьма разнообразны.

Давление – это физическая величина, характеризующая воздействие усилия на единицу площади поверхности тела или условно выделенную внутри тела элементарную площадку.

Величина давления р жидкости или газа на стенку сосуда, который они полностью заполняют, определяется силой dF, действующей по нормали к элементу поверхности ds стенки сосуда:

p = dF/ds.

На жидкость действует также сила тяжести. Поэтому, например, в случае, когда столб жидкости находится в открытой вертикальной емкости, давление в точке на расстоянии h от поверхности равно сумме атмосферного давления p0 и массы столба жидкости, действующей на единицу площади:

p = p0+ pgh,

где р — плотность жидкости; g – ускорение силы тяжести.

Если на жидкость действует еще какое-либо ускорение, необходимо учитывать также влияние силы инерции на величину давления.

Атмосферное давление p0, называемое барометрическим или гравитационным, является следствием земного притяжения, удерживающего частицы воздуха у поверхности Земли. На практике измерения осуществляются чаще всего относительно исходного атмосферного давления. Разность давлений внутри сосуда и атмосферного давления снаружи сосуда называется избыточным давлением, причем избыточное давление может быть как положительной, так и отрицательной величиной. Сумма барометрического и избыточного давления называется абсолютным давлением.

Барометрическое давление в разных слоях атмосферы зависит от высоты их расположения над уровнем моря и изменяется по экспоненциальному закону:

pH = p0[ехр(– ρ / ρ 0)Н],

где p0 и pH — соответственно давления на уровне моря и на высоте Н от уровня моря; ρ 0 — плотность воздуха на уровне моря.

На рис. 5.1 показано изменение давления в атмосфере Земли в зависимости от высоты над уровнем моря.

Рисунок 5.1– Распределение давления в атмосфере в зависимости от высоты над уровнем моря

 

Измерение давления в неподвижной жидкости или газе в замкнутых сосудах, полостях и трубопроводах сводится к измерению силы F, действующей на поверхность S стенки, ограничивающей среду – объект измерения. В движущейся жидкости или газе различают три вида давления: статическое давление неподвижной среды Рs, динамическое давление рd, обусловленное скоростью v движущейся жидкости или газа, и полное давление р, представляющее сумму этих двух давлений:

Р = Рs + Рd.

Динамическое давление, действующее на поверхность, нормальную направлению течения, увеличивает статическое давление на величину

Рd = ρ V2 /2,

где V – скорость движения жидкости или газа; ρ – плотность среды.

Измерение статического и динамического давлений можно осуществлять с помощью двух отдельных датчиков давления Д1 и Д2, соединенных с выходными отверстиями трубки Пито (рис. 5.2). Выходной сигнал первого датчика будет пропорционален величине статического давления, а второго датчика – полного давления. Разность этих сигналов позволит определить величину динамического давления.

Отдельной областью являются измерения акустических давлений – знакопеременных давлений в газах и жидкостях в звуковом и ультразвуковом диапазонах частот. Датчики акустических давлений должны реагировать только на переменную составляющую измеряемого давления, т. е. на выходной сигнал не должно влиять атмосферное давление.

 

Рисунок 5.2–Схема измерения полного давления с помощью трубки Пито

Единицей измерения давления и напряжения в системе СИ является Паскаль - давление, вызываемое силой 1 Н, равномерно распределенной на поверхности 1 м и нормальной к ней. Однако на практике продолжают использоваться внесистемные единицы измерения давления, применение которых обусловлено практическими нуждами. В табл. 5.1 дан перевод наиболее распространенных единиц измерения давления.

Таблица 5.1

Единицы измерения давления Па бар атм. кг/см2 мм рт.ст. мм вод.ст.
Па   10-5 0,9896×10-5 1,02×10-5 0,75×10-2 0,102
Бар 105   0,9896 1,02   1,02×104
Атм.   1,013   1,033    
кг/см2 9,807×104 0,9807 1,033   7,35×103 104
мм.рт.ст. 0,75×10 -2 1,33×10-3 1,315×10-3 1,36×10-3   13,6
при 0°С            
мм. вод. ст. 0,102 9,8×10-3 9,68×10-3 10-4 7,35  
при +4°С            
фунт/дюйм 0,1451×10-3 6,89×10-2 0,068 7,03×10-2 51,75 7,03×10-2

В акустических измерениях уровень звукового давления газовой среды (дБ) обычно оценивается в относительных единицах согласно формуле

N = 20 lg (Р / Р0),

где Р – эффективное значение акустического давления, Па; Р 0 = 2×10-5 Па – давление, соответствующее величине интенсивности звукового порога.

Перевод единиц из одной системы в другую в соответствии с приведенной выше формулой представлен в табл. 5. 2.

Таблица 5.2

дБ мкбар кг/см2 Па
    2×10-6 0,2
    4×10-6 0,4
    8×10-6 0,8
    1,6×10-5 1,6
    2×10-5 2,0
    6,4×10-5 6,4
    2×10-4  
  632,4 6,3×10-4 63,2
    2×10-3  
    6,3×10-3 632,4
    2×10-2  
    6,3×10-2  
  2×105 0,2 2×104
  6,324×105 0,632 6,324×104
  2×106 2,0 2×105

 

В зависимости от скорости изменения давления, т.е. характера зависимости Р (t), все разнообразие задач измерения давлений можно свести к трем вариантам: измерение статических и медленноменяющихся давлений, измерение быстроменяющихся давлений и измерение импульсных давлений.

На практике к группе статических принято относить давления, значение которых остается неизменным за время проведения измерений. Медленноменяющееся давление — это процесс, содержащий постоянную составляющую и гармонические составляющие с частотами до 20...30 Гц.

К быстроменяющимся и импульсным давлениям относят процессы со случайными и гармоническими составляющими в частотном диапазоне от десятков до сотен тысяч герц.

Быстроменяющиеся давления (рис. 5.3,б) включают в себя периодически меняющиеся и переходные процессы. Пульсация давления жидкости и газа и акустические шумы часто представляют собой случайный колебательный процесс (рис. 5.3б, г).

Импульсные давления имеют вид одиночных или периодически повторяющихся импульсов и характеризуются значительной амплитудой импульсов и коротким временем нарастания и спада процесса. Чаще всего эти процессы не имеют постоянной составляющей (рис. 5.3,д–ж).

Наиболее жесткие метрологические требования предъявляются к датчикам и системам, измеряющим статические и медленноменяющиеся процессы. Это объясняется тем, что датчики должны с допускаемыми погрешностями одновременно измерять переходные процессы и установившиеся давления, сопровождаемые пульсацией. Эти требования противоречивы и во многих случаях трудносовместимы в одном датчике, так как для измерения переходных процессов с малой погрешностью необходима высокая частота собственных колебаний и малая степень успокоения, а для малой погрешности измерения установившегося давления, сопровождаемого высокочастотной пульсацией, необходима низкая частота собственных колебаний и большая степень успокоения. Датчики, предназначенные для измерения быстроменяющихся и пульсирующих давлений, должны обладать малыми динамическими погрешностями, т. е. высокой частотой собственных колебаний и отсутствием механических и электрических резонансов в рабочем диапазоне частот измерения давлений и дестабилизирующих факторов. При этом для обеспечения допускаемых динамических погрешностей системы в целом все элементы системы (датчик–усилитель–преобразователь–регистратор) должны быть согласованы по частотным диапазонам измерений.

 

.

Рисунок 5.3–Характер изменения давления во времени:
а – медленноменяющееся давление; б – медленноменяющееся давление, сопровождаемое пульсацией; в – быстроменяющееся давление с постоянной составляющей; г – быстроменяющееся давление без постоянной составляющей;
д – импульсное давление; е, ж – ударное или взрывное давление

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 649; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.