Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Акустико-эмиссионный контроль




Радиационный контроль

Радиационный контроль служит для выявления как внутренних дефектов, так и недоступных для визуального контроля поверхностных дефектов. Чувствительность контроля зависит от плотности материала и толщины просвечиваемого объекта, характера дефекта, его формы и ориентации, режима и условий просвечивания, метода регистрации результатов контроля. Радиационный контроль проводится в целях выявления в сварных соединениях: внутренних дефектов в виде трещин, непроваров, раковин, пор и шлаковых (окисных и других) включений; недоступных для визуального контроля поверхностных дефектов в виде прожогов, подрезов, превышения проплава и т.п. Радиационный контроль не позволяет выявлять: поры и включения диаметром поперечного сечения или непровары и трещины высотой менее удвоенной чувствительности контроля; непровары и трещины с раскрытием менее 0,1 мм; непровары и трещины, плоскость раскрытия которых не совпадает с направлением просвечивания или (при радиоскопическом контроле) с направлением строк телевизионного растра; любые дефекты, если их изображение на снимках совпадает с изображением посторонних деталей, острых углов или резких перепадов толщин свариваемых элементов. Наиболее целесообразен радиационный контроль для выявления объемных дефектов (пор, раковин и др.), им плохо выявляются плоскостные дефекты (непровары, трещины), плоскость раскрытия которых непараллельна направлению излучения. Самым распространенным методом радиационной дефектоскопии является радиография вследствие ее высокой чувствительности и простоты операций контроля. Важным преимуществом радиографического контроля является возможность определения типа (объемный или плоскостной) и вида (пора, шлаковое включение, непровар или трещина) выявленного дефекта. По данным вероятность выявления объемных дефектов в стыковых соединениях составляет около 90-92 %, а вероятность выявления плоскостных дефектов не превышает 30 %. При проведении радиационного контроля необходимо обеспечить радиационную безопасность персонала.

Акустико-эмиссионный контроль позволяет выявлять поверхностные и внутренние дефекты. Метод имеет достаточно сложную технологию, требует дорогого оборудования и очень высокой квалификации персонала.

Характерными особенностями, определяющими возможности, параметры и область применения акустико-эмиссионного метода, являются следующие: обеспечивается обнаружение и регистрация только развивающихся дефектов, что позволяет классифицировать дефекты не по размерам, а по степени их опасности; в производственных условиях метод позволяет выявить приращение трещины на десятые доли миллиметра; предельная чувствительность акустико-эмиссионной аппаратуры по расчетным оценкам составляет порядка 10-6 мм, что соответствует выявлению скачка трещины протяженностью 1 мкм на величину 1 мкм, что указывает на весьма высокую чувствительность к растущим дефектам; свойство интегральности метода обеспечивает контроль всего объекта с использованием одного или нескольких преобразователей, неподвижно установленных на поверхности объекта контроля; положение и ориентация дефектов не влияют на их выявляемость; метод имеет меньше ограничений, связанных со свойствами и структурой конструкционных материалов, чем другие методы неразрушающего контроля; особенностью метода, ограничивающей его применение, является в некоторых случаях трудность выделения акустико-эмиссионных сигналов из помех. Это связано с тем, что акустико-эмиссионные сигналы являются шумоподобными, поскольку акустическая эмиссия является случайным импульсным процессом. Вследствие этого, когда сигналы малы по амплитуде, выделение полезного сигнала из помех представляет собой сложную задачу. При развитии дефекта, когда его размеры приближаются к критическому значению, амплитуда сигналов и темп их генерации резко увеличиваются, что приводит к значительному возрастанию вероятности обнаружения такого источника акустической эмиссии. Акустико-эмиссионный контроль проводится только при создании в контролируемой конструкции напряженного состояния, инициирующего в материале объекта работу источников акустической эмиссии. Для этого конструкция подвергается нагружению.




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 1506; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.