Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тип ресурсов — ресурсы консументов 2 страница




Ресурсы продуцентов
45. Генетико-видовой состав растительности и хемопродуцентов Под угрозой исчезновения до 10 % видов растений. Требуется охрана
46. Растительная биомасса (в том числе лесные ресурсы) — в статике Биомасса продуцентов глобально снизились приблизительно на 7 % (по другим данным на 20 и более процентов)
47. Фотосинтетическая активность и первичная продуктивность Общая фотосинтетическая активность ниже желаемой (растения потребляют меньше СО2, чем его выбрасывает хозяйство). Первичная продуктивность упала примерно на 20%. Требуется регуляция
48. Хозяйственная производительность растительного покрова Не соответствует современным нуждам хозяйства. Может быть повышена лишь в ограниченных масштабах. Необходим переход на агрометоды производства и экономное использование. Целесообразен интенсивный поиск заменителей
49. Системно-динамические качества фитоценозов как функциональной части экосистем Наблюдающееся упрощение (вплоть до монокультур) потенциально опасно. Требуется регуляция и пристальное внимание
50. Способность продуцентов к очистке и др. их свойства в природных системах, включая производство свободного кислорода Ниже естественных норм и потребностей человечества (см. 17). Местами требуется восстановление
51. Ботанические «загрязнения» (вредные акклиматизанты) Локально приносят ущерб. Требуется внимание

 

Ресурсы консументов
52. Генетико-видовой состав животного мира и растений-консументов (главным образом генетические ресурсы животного мира) Под угрозой около 1000 видов крупных животных и неизвестное число мелких. Требуется сохранение реальных и потенциальных ресурсов
53. Биомасса консументов В целом стабильна, но нередко хозяйственно нежелательные формы сменяют полезные, крупных животных заменяют мелкие. Требуется регуляция и внимание
54. Вторичная биологическая продуктивность В целом ниже желательного для людей уровня (нехватка белка). Может быть повышена, особенно локально
55. Хозяйственная производительность консументов То же. Имеет перспективы аква- и марикультура
56. Системные динамические качества консументного звена экосистем как управляющей подсистемы в системах биосферы Недостаточно учитываются и используются. Искусственно подавляются (борьба с «вредителями») опасными методами (пестициды)
57. Роль животных как санитаров, поглотителей химических веществ, опылителей и т. д. Местами подавлена, что приводит к экономическим ущербам (снижение урожайности и т. п.). Требуется внимание
58. Консументные загрязнители (случайные акклиматизанты) Регионально очень нежелательны. Требуется пристальное внимание

 

Ресурсы редуцентов
59. Генетико-видовой состав редуцентов (главным образом генетические ресурсы микроорганизмов) Видимо, почти не изменен, но вопрос изучен слабо. Вероятно возникновение новых форм, в том числе нежелательных или даже опасных (новых заболеваний, разрушителей материалов и т. п.). Требуется внимание
60. Биомасса редуцентов Нет даже оценок
61. Химико-физическая активность редуцентов (с ее хозяйственной оценкой) Ниже желаемого уровня (не происходит самоочищения среды жизни). Требуется пристальное внимание
62. Системно-динамические качества подсистемы редуцентов в экосистемах Видимо, неизменны
63. Микробиологические загрязнения (в том числе вирусные) Усиливаются, создают пандемии, но в ходе борьбы с ними подавляются. Требуется повседневный контроль и напряженная борьба, в особенности с помощью ослабления культур, превращения «в друзей» без освобождения экологических ниш

 

Комплексная ресурсная группа
Климатические ресурсы
64. Естественные климатические ресурсы Существует угроза резкого изменения. Необходима регуляция
65. Водоизменения климатических ресурсов (местного климата) Позитивные и негативные изменения. Необходимо внимание
Рекреационные ресурсы
66. Ресурсы природной среды — оптимума повседневных условий для жизни людей В целом благополучны, кроме отдельных мест, особенно в урбанизированных регионах. Требуется регуляция
67. Ресурсы отдыха Происходит быстрое исчерпание. Требуется внимание
68. Лечебные природные ресурсы То же
Антропоэкологические ресурсы
69. Природно-очаговые эпидемии и трансмиссивные заболевания Ведется успешная борьба. Возможно возникновение очагов новых типов. Требуется пристальное внимание
70. Социально-антропоэкологические ресурсы Социальная среда усложняется. Возрастают стрессы. Требуется особое внимание
71. Генетические ресурсы человечества Напряжены. Местами близки к исчерпанию и наблюдается генетическое вырождение (разрушение генофонда)
Познавательно-информационные природные ресурсы
72. Природно-эталонные ресурсы Постепенно исчезают. Требуется внимание, при возможности — восстановление
73. Природно-исторические информационные ресурсы Деградируют. Необходимо сохранение и поддержание, при возможности — восстановление
Ресурсы пространства и времени
74. Ресурсы пространства (территориальные, водного и воздушного, включая ближайший космос, пространства) Наблюдается переуплотнение населения, замусоривание даже ближайшего космического пространства. Требуется внимание
75. Ресурсы времени Один из самых дефицитных ресурсов. Человечество не успевает реагировать на производимые им же изменения среды. Возникает угроза глобального дисхроноза исторического развития
76. Ресурсы общего экологического баланса Близки к исчерпанию. Необходимо особое внимание

В целом наблюдается ресурсная напряженность. Человечество выросло из коротких штанишек лишь пользования плодами Земли. А перехода к системному ресурсному мышлению окончательно не произошло. Он, видимо, совершится в ближайшие годы. По оценкам, человечество для этого имеет 3 — 4 десятилетия. Хватит ли людям мудрости преодолеть трудности без жесточайших конфликтов, покажет время.

 

ГЛАВА 5
ЭКОЛОГИЧЕСКОЕ РАВНОВЕСИЕ
И ПРИРОДНЫЕ ОСОБО ОХРАНЯЕМЫЕ ТЕРРИТОРИИ

Глава подготовлена в соавторстве с Ар. Н. Реймерсом.

Последнюю ступень невежества представляет собой
человек, который, глядя на растение или животное,
вопрошает: «А что с них толку?»
А. Леопольд

Понятия, совершенно очевидные для одних ученых, порой кажутся другим глубочайшей ошибкой. Такова судьба и представлений об экологическом равновесии. Причина отсутствия взаимопонимания лежит в области различного толкования слова «равновесие». В механике (статике) оно обозначает состояние покоя, неподвижности, стационарности. Это физическое понимание отражено во многих словарях без упоминания о иных толкованиях. Между тем динамическое равновесие в других разделах физики и в химии означает состояние не покоя, а подвижного баланса в ходе одновременно идущих противоположных процессов, например, испарения и конденсации или синтеза — распада при обратимых химических реакциях. «Равновесие» в данном случае означает сохранение определенного состояния, взаимоотношения. Продолжительность такого равновесия специально не оговаривается, но подразумевается, что она в открытых системах длительна, а в закрытых условно бесконечна.
В еще более динамичном понимании слово «равновесие» рассматривается биологией, экологией и географией. Тут оно нацело теряет свой физический смысл и значительную часть признаков «химического» толкования, прежде всего в количественных характеристиках. Вместо условно абсолютного равенства противоположных процессов рассматривается медленно изменяющееся неравенство, например ассимиляция и диссимиляция, баланс вод между сушей и океаном и т. п. Взамен неопределенного времени подразумевается его эволюционные, исторические, даже системно-индивидуальные отрезки. В абсолютных величинах они колеблются от миллиардов и миллионов лет (для космических и геологических систем) до немногих минут (индивидуальное «равновесие» для одноклеточных организмов, существование которых длится несколько более часа). Сохраняется лишь самый существенный признак динамического равновесия — относительная неизменность определенного состояния, или качества рассматриваемой системы. В экосистемах это состояние возникает в результате динамического сопряжения взаимосвязанных экологических компонентов (энергии, газового состава, воды и т. д.) и происходящих в них процессов в пределах, диктуемых внутренними связями и внешними воздействиями. Если происходит смена качества и прежнее равновесие нарушено, может наступить новый его этап или даже весьма отличающаяся форма. Следовательно, экологическое равновесие — сохранение природной или природно-антропогенной системы в качественно определенном состоянии в течение системно-характерного для нее времени (например, для биосферы в рамках крупного эволюционного этапа ее развития — в течение геологического периода).
Экологическое равновесие в силу очень расширенного понимания самого слова «экология» можно рассматривать как чисто эволюционное, эволюционно-историческое понятие — соотношение ресурсно-экологических возможностей и хозяйственных потребностей — и как сравнительно кратковременный природный баланс функционального и территориального плана. Эти вопросы были подробно рассмотрены нами ранее* и в разделах 3.9.1 и 3.14 этой книги, поэтому ограничимся упоминанием о них.

* Реймерс Н. Ф., Штильмарк Ф. Р. Особо охраняемые природные территории. М.: Мысль. 1978. С. 87—115.

Природный баланс имеет геофизические, геохимические и биологические аспекты. При этом в приложении в человеку биологический аспект приобретает индивидуальное и общественное звучание, начиная от здоровья людей и кончая их социально-экономическими устремлениями. Противоречивость естественных процессов и множества целей человечества столь велика, что наука еще очень далека от разработки окончательных рецептов. Ясен лишь общий принцип: человек как составляющее биосферы и ее живого вещества всецело зависит от благополучия того эволюционного состояния системы в целом, в котором он возник и развивался. Следовательно, глобальное нарушение экологического равновесия, переход биосферы в иное качественное состояние означало бы для человечества геофизическую, геохимическую и биологическую катастрофу. Социальные механизмы как вторичные могут ее отдалить или приблизить, но не ликвидировать. В данном случае имеется полная аналогия с продолжительностью индивидуальной жизни — все формы активного сохранения здоровья не могут сделать человека бессмертным, но способны значительно отдалить роковой момент.
Осознание факта «смертности человечества» нередко с порога отметается как порок «финализма». Между тем именно вера в «бессмертие» разоружает науку, заменяет точное знание слепым верованием, что все само собой как-то уладится. Не вера в то, что «кривая вывезет», а активное, как правило, «мягкое» управленческое вмешательство в ход идущих процессов, часто весьма далеких от оптимальных для человечества, с целью направления их саморазвития — задача науки. Это касается и поддержания необходимого людям экологического баланса.

** Одум Ю. Основы экологии. М.: Мир, 1975. 740 с.; Одум Г., Одум Э. Энергетический базис человека и природы. М.: Прогресс, 1978. 379 с.; Odum E. P., Odum Н. Т. Natural areas as necessery components of man's total environment//Trans. 37-th. N. Amer. Wildlife and Natur. Resour. Conf., Mexico City, Мех., 1972. Washington, D. C. 1972. P. 178—179; Одум Ю. Экология. В 2-х тт. М.: Мир, 1986. 328, 376 с.

Физический, а скорее энергетический аспект экологического баланса наиболее полно разработан Одумами**. Не абсолютизируя значения энергетического подхода, разработанного указанными авторами, следует признать справедливым их утверждение о стремлении природных систем к «нулевому» энергетическому балансу с переносом энергии в одном направлении и равенством ее поступления, расхода и стока. С рядом оговорок можно принять и положение о преимуществе системы, способной к наилучшему приему и использованию энергии. Напомню, что механизмы и пути оптимизации в энергетике системы, по Г. и Э. Одумам (с. 72 — 73), сводятся к: 1) созданию накопителей энергии, 2) затратам накопленной энергии на обеспечение поступления ее новых порций, 3) затратам энергии на биогеохимический круговорот, 4) адаптационным и гомеостатическим затратам и 5) обмену энергией с другими системами (разд. 3.2.3, 3.8.1 и 3.9.1).
Любые изменения физики планеты неизбежно ведут к переменам энергетических балансов всех био- и экосистем, сдвигам в интенсивности переноса энергии, а, следовательно, новой фазе оптимизации по всем пяти перечисленным пунктам. Меняется величина накопленной в биосфере энергии, ее способность воспринимать и отдавать новые энергетические порции, трансформируются биогеохимические циклы, меняются адаптационные способности и энергетические взаимодействия крупных подсистем биосферы. То же происходит на более низких ступеньках лестницы природно-системной иерархии — на уровне суши и океана, их подразделений — биомов и т. д. (см. главу 2).
На экосистемной «ступеньке» происходит сдвиг в соотношении звеньев экологической (в данном случае — энергетической) пирамиды. Например, общий энергетический баланс двух аналогичных (скажем, луговых) экосистем, в одной из которых доминирующими первичными консументами служат крупные копытные животные, а в другой мелкие беспозвоночные-фитофаги (после того, как в экосистеме были уничтожены крупные травоядные млекопитающие, большая часть грызунов и даже значительная доля членистоногих), может быть аналогичен. Но относительные затраты энергии у мелких особей выше, чем у крупных (разд. 3.8.1), механизмы накопления энергии — другие, интенсивность и характер биогеохимического круговорота в экосистеме иная, адаптационные реакции резко отличны, а обмен энергией с другими экосистемами подчиняется особым правилам, не совпадающим у двух рассматриваемых аналогов.
Физическое состояние всей ткани биосферы, таким образом, может оказаться очень далеким от исходного. Ход этого процесса управляем лишь до определенной грани, количественная характеристика которой выражается функциональным и территориальным соотношением природных систем различной степени организованности и сложности.

* Хильми Г. Ф. Основы физики биосферы. Л.: Гидрометеоиздат, 1966. С. 272. ** Там же. С. 272.

Г. Ф. Хильми, исследуя физику биосферы, сформулировал закон обеднения «разнородного живого вещества в островных его сгущениях»* (разд. 3.2.5 и 3.7.3). Напомним, что этот закон гласит: «индивидуальная система, работающая в... среде с уровнем организации более низким, чем уровень самой системы, обречена: постепенно теряя свою структуру, система через некоторое время растворится в окружающей... среде»**.
Следовательно, физическое состояние сложных природных систем всецело зависит от общего уровня организации среды. Ее структурная поляризация в ходе освоения человечеством с перенесением центра тяжести на упрощение (монокультуры — максимально упрещенные ценозы) таит в себе потенциальные опасности для людей.
Геохимические круговороты, имеющие естественные механическую, физико-химическую и биогенную составляющие, взаимодействующие с техногенной миграцией элементов, в настоящее время охватывают все 104 элемента периодической системы Д. И. Менделеева и многие их изотопы. В силу так называемой технофильности элементов (отношение их ежегодной добычи к среднему содержанию в земной коре, или кларку), а также все большего техногенного геохимического давления, т. е. перехода элемента из техногенного потока в природный, измеряемый в т/км2, на поверхности Земли образуются непропорциональные среднеглобальному естественному фону скопления элементов*. Увеличивается и загрязнение поверхностных геосфер различными веществами — кислотами, нефтью и т. д.

* Перельман А. И. Геохимия. М.: Высшая школа, 1979. 423 с. ** ПерельманА. И. Геохимия. М.: Высшая школа, 1979. 199 с. *** Pell Q. S. Metals in the environment. 2. Health effects//Chem. Brit. 1980. V. 16. № 6. P. 323 — 326.

Антропогенное нарушение естественного химического баланса иногда приносит внезапные «сюрпризы», осознаваемые в результате лучшего, чем прежде, знания положения вещей. Такой высокотехнофильный элемент, как алюминий, еще недавно считался безвредным. В живом веществе он выступает в качестве микроэлемента (его содержание тут равно 5 × 10-3%**. Более тщательное изучение воздействия алюминия на организм человека выявило, что этот металл вызывает нарушения мозговой деятельности, заболевания костей, анемию и различные неспецифические синдромы. Высокой токсичностью обладают свыше 20 других широко распространенных металлов***.
Поскольку, по закону биогенной миграции атомов В. И. Вернадского, миграция химических элементов в биосфере осуществляется при непосредственном участии живого вещества (разд. 3.10), существующее экологическое равновесие определяет как нынешнюю геохимическую ситуацию, так и ту, что сложится в будущем. При этом законы сложения геохимической картины ближайшей и более отдаленной перспективы известны очень мало, если вообще мы что-то знаем с достаточной для практики степенью подробности.
Еще менее ясно положение в области биологического сектора глобальной экологии. Живое вещество обладает определенным единством, нарушение которого вызывает компенсаторные реакции. Яснее всего они проявляются в освоении организмами новых экологических ниш,— грубо говоря, занятии ими новых позиций в биологической борьбе всех против всех (разд. 3.8.2). Практически мы ощущаем такие перестройки в виде появления новых массовых вредителей и возбудителей болезней растений, животных и человека. Собственно, явление сверхразмножения вообще есть результат нарушения экологического равновесия, дисбаланса в природной системе: в «дикой» природе вредителей нет.

* Львов Д. К., Жданов В. М. Роль природных биоценозов в сохранении генофонда популяций вируса гриппа//Экология вирусов. М., 1980. С. 5 — 10. ** Hogle S. F. Wickzumasigha С. Influenza from space?//New Sci. 1979. V. 79. № 1122. P. 946 — 948. *** Классический труд этого направления: Чижевский А. Л. Земное эхо солнечных бурь. 2-е изд. М.: Мысль, 1976. 367 с.

Человечество как биологический вид находится в ткани живого вещества планеты. Пока недостаточно ясна степень единства этого образования, глубина взаимосвязанности в нем видов. Имеющиеся косвенные данные говорят о наличии взаимозависимости. Так, вирусы гриппа непатогенных для человека форм широко циркулируют среди животных*. Генетические рекомбинации приводят к одинаковым изменениям вируса и к практически одновременной вспышке заболевания по всему миру, хотя природные резервуары вируса чрезвычайно разнообразны (дикие и домашние птицы и млекопитающие), а контакты между людьми нередко совершенно исключены. Английский эпидемиолог XIX века Черльз Крейтон винил в одновременности пандемий гриппа некие глобальные «миазмы»**. Были довольно успешные попытки связать время пандемий гриппа с периодами повышенной солнечной активности: 1917, 1928, 1937, 1947, 1957, 1968 и 1980 — 81 гг.— одновременно годы высокой солнечной активности и пандемий гриппа***. Поднялась волна гриппа и в период повышения солнечной активности 1990 — 1991 гг. Впрочем, сейчас они следуют почти ежегодно.
Вне зависимости от «спускового механизма» пандемий гриппа одновременная адекватная реакция вируса и его носителей говорит о высокой степени единства живого вещества (зако»см. в разд. 3.3), а следовательно, и о глубокой зависимости между видами, его составляющими. Сам факт возможности возникновения и циркуляции вируса одного типа в различных видах животных говорит о их физико-биохимическом сродстве.
Непосредственными наблюдениями подтверждается очевидная связь живого в процессе создания биосреды. Так, процент облесенности местности — фактор среды, наиболее часто коррелирующий с состоянием здоровья населения*. Присутствие зелени просто необходимо для человека.
Возникает вопрос: до какой степени уменьшения разнообразия экосистем (с антропогенным исчезновением видов и заменой сложных ценозов простыми) будет сохраняться здоровье человечества как целого? Второй вопрос: какова же степень ныне существующего упрощения, экологической депривации, ведущей к потере устойчивости? На первый вопрос пока нет ответа. Ответ на второй вопрос предположителен. Есть основания полагать, что живое вещество в целом уже потеряло порядка 90% генного разнообразия**. Поскольку отсутствуют данные о допустимой потере (ответ на первый из поставленных вопросов), это число нам пока ни о чем не говорит.

* Miksl R. Faktor lesa jako hezavisie promena son barneho ukazatela zivotiko prostredt// Cs. hyg. 1979. V. 24. P. 149 — 152. ** Vida G. Genetic deversity and environmental future//Environ. Conserv., 1978. V. 5. №2. P. 127 — 132. *** McAllister K., Krlebel D. Cancerogen fill DES and cancer//Environ-ment. 1980. V. 22. № 27. P. 35 — 36 — **** Heigerer H. Landwirtschaft und Umweltbelastung//Schriften Agrarwiss, Fach-bareichs Univ. Kill. 1979. № 51. S. 290 — 304. ***** Бельгибаев М. Е. О предельно допустимой величине дефляции почв//Прогресс, направления проектирования, строительства и эксплуатации мелиоративных систем в условиях Сибири. Красноярск, 1978. С. 252—254.

Более того, судить о благополучии среды по состоянию здоровья ныне уже зрелого поколения людей, к сожалению, нельзя. Эффекты могут выявиться лишь у потомков. Так, широкое применение в медицине США химического аналога женского полового гормона (с иным молекулярным строением, чем естественный) в 1940 — 1950 гг. неожиданно привело, к резкому учащению заболеваний раком матки и влагалища у 15 — 22-летних дочерей женщин, пользовавшихся этим препаратом***.
Из теоретической экологии хорошо известно, что внешне преуспевающие популяции в ряде случаев могут стоять на пороге серьезных потрясений. Социально-экономические успехи человечества нередко скрывают биологическое неблагополучие, и это делает проблему еще более сложной.
Затушевывание экологического дисбаланса весьма обычно. Так, высокие урожаи, получаемые с помощью минеральных удобрений, гербицидов, фунгицидов, инсектицидов и т. п., дающие желаемый экономический эффект, скрывают прогрессирующую минерализацию почв. В ФРГ этот процесс уже давно приобрел угрожающие масштабы****. Высокие урожаи маскируют и тот факт, что сейчас повсеместно наметилась тенденция более высоких темпов разрушения почвенного покрова, чем скорость почвообразования. Для формирования 1 см почвенного слоя требуется в зависимости от условий от 10 до 50 лет*****. Под монокультурой кукурузы дефляция почвы идет со скоростью 1,3 см/год, т. е. во много раз быстрее почвообразования.
Приведенные примеры указывают на необходимость превентивной заботы об экологическом равновесии, которое биологически необходимо человечеству, а в социально-экономическом смысле оказыввается экологическим фундаментом развитии общества.

* ГоленицкийА. Н. Вопросы определения экономической эффективности капитальных вложений на охрану окружающей среды.//Науч. Тр. Моск. ин-та управления, 1978. № 136. С. 132—139. ** Weiss H. Landschaft als Ware?//Anthos. 1979. V. 18. № 3. S. 2—8.

В качестве такого фундамента экологическое равновесие в эпоху товарно-денежных отношений выступает как своеобразный «товар», стоимость которого возникает из прямых затрат на охрану природной среды и косвенных вложений общества, связанных с отказом от перспективных в экономическом смысле, но пагубных в экологическом отношении начинаний (разд. 6.4). Величина экономического эффекта от проведения природоохранных мероприятий может оцениваться как разность полных народнохозяйственных затрат до осуществления мер по улучшению среды и после их проведения плюс разность доходов до и после проведения природоохранных мероприятий*. Такой подсчет сделать очень трудно, поскольку в его орбиту неминуемо включаются социальные преимущества и издержки длительного периода времени. На примере Швейцарии было показано, что даже в условиях рыночной экономики ландшафт не может быть приравнен к товару, так как он необходим всем и его сохранение и восстановление проводится в интересах всего общества**.

* Новоженин Ю.Х. Экосистемное землепользование как принципиальная основа для возрождения природы//Интродукция, акклиматизация растений и окружающая среда: Куйбышев, 1978. № 2. С. 113 — 133. Масштаб цен соответствующего года. ** ЮркевичМ. С. Экономическая эффективность защитного лесоразведения на горных склонах в Средней Азии//Тез. докл. на Всес. совещ. «Защитное лесоразведение и рациональное использование земельных ресурсов в горах». Ташкент, 1979. С. 293 — 294. *** Ажибеков К. А. Экономическая эффективность защитных насаждений в поясе арчевых лесов Киргизии/Там же. С. 298 — 301. **** Everett R. D. The monetary value of the recreational benefits of wildlife//J. Environ. Manag. 1978. V. 8. № 3. P. 203 — 213. ***** Raphael C. N., Jaworski E. Economic value of fish, wildlife and recreation in Michigan's coastal wetlands//Coast Zone Manag. J. 1979. V. 6. № 3. P. 181 — 194.

Если говорить об экологическом равновесии, то затраты на его достижение в сельскохозяйственных районах европейской части нашей страны оцениваются в размере 600 тыс. р. на каждые 1000 га сельскохозяйственных угодий со сроком окупаемости в течение 3 — 5 лет после их проведения*. В лесном хозяйстве Карпат общая экономическая оценка 1 га леса в 80-е гг. достигла 5,7 тыс. р., а затраты на его восстановление составляют всего 217,7 р/га (Ю. Ю. Туныця, личное сообщение). Ежегодный суммарный экономический эффект горных лесов Средней Азии колеблется в зависимости от условий в пределах 80 — 750 р. на 1 га, а коэффициент экономической эффективности затрат на защитное лесоразведение от 0,15 до 2,5 р/га**. При этом указанный доход исчисляется без цены реализованной древесины, побочного пользования лесом и продукции сенокосов***. Расширяя число отраслевых примеров, можно указать, что для одного из участков в Великобритании оценка рекреационных ресурсов составила 157 фунтов стерлингов на 1 га в год****, а в штате Мичиган прибрежные водно-болотные угодья в 1977 г. дали доход в размере 489,69 долларов на акр*****.
Суммарный экономический эффект природных особо охраняемых территорий, как указывалось в нашей книге о них (см. сноску в начале главы, с. 197 — 205), начал превышать доход традиционного хозяйства, поскольку оздоравливающие и поддерживающие природный баланс свойства этих территорий неотъемлемы от экономического механизма, а рекреационные потребности населения и его нужда в здоровой среде жизни растут опережающими темпами по отношению к остальным нуждам. Особенно ярко последняя тенденция проявляется в густонаселенных развитых странах. Например, в Великобритании уже в 1977 г. расходы на отдых составили 20% бюджета потребителей*.

* Patmore J. A. Recreation and leisure//Progr. Hum. Geogr. 1978. V. 2. № 3. P. 118 — 125

Пример сравнения экономической эффективности использования долины реки Катунь как рекреационной территории и источника получения гидроэнергии приведен в приложении «Методология научной...» к этой книге, поэтому дальнейшую аргументацию здесь продолжать не будем.
На высокую экономическую эффективность заповедания указывал еще в 1882 г. известный шведский полярный исследователь А. Э. Норденшельд (1832 — 1901), опубликовавший ксожалению полузабытую статью «Проект устройства в северных странах государственных парков». Ученый говорил о необходимости перевода крупных лесных территорий на особый режим с запрещением рубки и других видов лесопользования ради сохранения природных ресурсов*.

* Blafield M. A. E. Nordenshiold ja Kansallispuistooate//Suomen luonto. 1980. V. 39. № 5. P. 219 — 222, 249. ** Формирование растительного покрова при оптимизации ландшафта//Материалы 3-й Всес. школы, Каунас, 10 — 14 сент. 1979. Вильнюс. Ин-т ботан. АН ЛитССР, 1979. 206 с., Маценко А. Е., Пенькос-Миркова Г. Об охране природы в Польше//Бюлл. Гл. Ботанич. Сада АН СССР. 1980. № 116. С. 72 — 73. Напомним, что под особо охраняемыми территориями понимаются любые площади суши и акватории, непосредственно предназначенные для тех или иных целей охраны природы и поддержания среды жизни. *** Kozrowski S. Ekologiczny system obszarow chronionyeh//Aura. 1979. № 8. P. 20—22.

Экологическая оптимизация ландшафта с помощью природных особо охраняемых территорий широко применяется в нашей стране и за рубежом. Эта целевая функция их создания особенно четко выражена в республиках Балтии и в Польше**. В Прибалтике сеть различных категорий охраняемых территорий по плану должна занимать около 40% площади. В Польше к 2000 г. по проекту Комиссии охраны и формирования ландшафта Польской АН абсолютные резерваты будут охватывать порядка 0,75% площади страны, национальные парки рекреационного назначения — 1,5% ее территории и еще 20 — 30% площади страны займут зеленые зоны, места воскресного отдыха населения и тому подобные участки***.
С точки зрения тех положений теории, которые следуют из законов одного и десяти процентов, всей идеологии, изложенной в главе 3 книги, площадь особо охраняемых, или, вернее, целенаправленно охраняемых территорий должна быть такой, чтобы не нарушать упомянутые законы. Строго говоря, это утверждение — революционный переворот во всей теории «заповедного дела» (крайне неудачный термин), или сепортологии, как мы назвали этот раздел знания. Ранее был иной подход. Говорили о сохранении биоты, некоей отвлеченной «природы». Для достижения такой цели нужны лишь относительно небольшие территории. Но для поддержания экологического равновесия всегда охранять требуется либо площади, большие чем неохраняемая их часть, либо жертвовать балансом старого уровня ради возникновения нового. Сохранить можно лишь системные природные совокупности, а не какие-то отдельные компоненты. Это хорошо известно биоэкологам. Вид без сохранения его местообитания неминуемо исчезает. И при этом не один, а в консорционном комплексе.
В связи со сказанным следует вести речь о сохранении в той или иной степени неизменном виде подавляющей части пространства планеты — не отдельных процентов территории суши, а в зависимости от степени преобразованности экосистем многих десятков процентов. Эта идеология была отражена на картосхемах изданных мною словарей (рис. 5.1).




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1233; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.