4) Каждой паре комплексно-сопряженных корней кратности сопоставим линейно независимых решений
5) Объединим все полученные линейно независимые решения. Получим фундаментальную систему решений уравнения (1), состоящую из функций ( – порядок уравнения (1)).
Общее решение уравнения (1) имеет вид
где – построенная в алгоритме 1 фундаментальная система решений, а --- произвольные постоянные.
Пример 2. Найти общее решение уравнения
Решение. Составляем характеристическое уравнение , находим его корни и устанавливаем их кратности:
Согласно алгоритму 1 выписываем линейно независимые решения, отвечающие каждому корню:
Следовательно, общее решение исходного уравнения имеет вид
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление