Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема Коши для односвязной области и многосвязной области. Интегральная формула Коши




 

Напомним, что множество называется односвязным, если любой замкнутый контур, лежащий в можно стянуть в точку, не выходя из . Множество называется связным, если его граница состоит из попарно не пересекающихся между собой замкнутых контуров. Например, на рисунке A изображена односвязная область, на рисунке B – 4-связная область (одна внешняя граница и три внутренних границ). При этом будем говорить, что направление на границе является положительным ( – положительно ориентирована), если при её обходе область остаётся слева. Например, на рисунке C граница двухсвязной области положительно ориентирована. Ориентация, противоположная положительной, называется отрицательной.

Теорема Коши для односвязной области. Пусть область односвязная и функция аналитична в Тогда каков бы ни был кусочно-

гладкий замкнутый контур лежащий внутри интеграл от по равен нулю.

Доказательство. Вычислим интеграл

Воспользуемся формулой Грина:

где область, охватываемая контуром Будем иметь

(здесь в квадратных скобках выписаны условия Коши-Римана, которые выполняются, так как функция аналитична в области ). Теорема доказана.

Теорема Коши для многосвязной области. Пусть область связна,причем её внешняя граница, а её внутренние границы, обходимые все против часовой стрелки. Пусть функция аналитична в Тогда имеет место равенство

 

Доказательство проведём для двухсвязной области Сделаем разрез соединяющий внутреннюю и внешнюю границы и Тогда область будет односвязной, а замкнутый контур лежит в Значит, для этого контура справедлива предыдущая теорема: Применяя свойство аддитивности интеграла, будем иметь

Рис. 10

Учитывая, что приходим к равенству

Остаётся учесть, что здесь контуры и обходятся против часовой стрелки. Теорема доказана.

И, наконец, сформулируем без доказательство следующее важное утверждение.

Интегральная теорема Коши. Пусть функция аналитична в односвязной области Тогда какова бы ни была точка лежащая внутри области и замкнутый кусочно-гладкий контур , охватывающий точку и обходимый против часовой стрелки, справедлива интегральная формула Коши

При этом функция имеет всюду в производные любого порядка, для которых справедлива формула

.

Замечание 1. Если функция аналитична в замкнутой ограниченной области с кусочно гладкой границей то в качестве контура в (6) можно взять границу Тогда из (5) вытекает, что аналитическая в функция полностью определяется своими значениями на границе Таким свойством действительные функции не обладают.

Интегральная формула Коши имеет многочисленные применения, о которых будет сказано в дальнейшим. Рассмотрим несколько примеров.

Пример 1. Вычислить

Решение. Внутри окружности знаменатель дроби обращается в нуль в точке . Для удобства применения формулы (5) перепишем интеграл в виде

.

Здесь и аналитична в круге . Тогда .

Пример 2. Вычислить : по

а) контуру ; б) .

Решение. а) В круге функция аналитична. Следовательно, по теореме Коши для односвязной области получаем, что .

б) Так как внутри контура интегрирования знаменатель подынтегральной функции обращается в нуль в точках и , то для того, чтобы стало возможным применить формулу (5), рассмотрим многосвязную область (рис. 11), ограниченную окружностью и внутренними контурами и .

Рис. 11

Тогда в области функция является аналитической, и по теореме Коши для многосвязной области можно записать: . Для вычисления интегралов справа применим формулу (5):

;

 

Таким образом, .

 

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1761; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.