КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Волна или частица?
Каждому известно, что вода (и, следовательно, волны на поверхности воды) состоит из огромного количества молекул. Поэтому так ли удивительно, что световые волны тоже состоят из огромного числа частиц — фотонов? Удивительно. Но главный сюрприз кроется в деталях. Дело в том, что более трехсот лет назад Ньютон провозгласил, что свет представляет собой поток частиц, так что сама идея не нова. Однако ряд коллег Ньютона, среди которых наиболее выделялся голландский физик Христиан Гюйгенс, оспорили это мнение, утверждая, что свет представляет собой волну. Долгое время этот вопрос был предметом ожесточенных дебатов, пока эксперименты, выполненные в начале XIX в. английским физиком Томасом Юнгом, не показали, что Ньютон ошибался. Вариант установки в эксперименте Юнга, известном под названием опыта с двумя щелями, схематически показан на рис. 4.3. Фейнман любил говорить, что вся квантовая механика может быть выведена путем тщательного осмысливания следствий одного этого эксперимента, поэтому он заслуживает того, чтобы рассмотреть его поподробнее. Как видно из рис. 4.3, свет падает на сплошную преграду, в которой сделаны две щели. Свет, который прошел через щели, регистрируется на фотопластинке — более светлые области на фотографии указывают на те места, куда попало больше света. Эксперимент состоит в сравнении картин, полученных на фотопластинках, когда открыты одна или обе щели и включен источник света.
Если левая щель закрыта, а правая открыта, фотография будет выглядеть, как показано на рис. 4.4. Картина вполне объяснима, поскольку свет, который попадает на фотопластинку, проходит только через одну щель и поэтому концентрируется в правой части фотографии. Аналогично, если мы закроем правую щель, а левую оставим открытой, фотография будет выглядеть, как показано на рис. 4.5. Если открыты обе щели, то картина, предсказываемая ньютоновской корпускулярной моделью света, должна выглядеть, как показано на рис. 4.6, представляющем собой комбинацию рис. 4.4 и 4.5. По существу, если представить ньютоновские световые корпускулы в виде маленьких дробинок, которыми вы обстреливаете преграду, то те из дробинок, которые пройдут сквозь нее, будут концентрироваться в двух полосах, положение которых соответствует положению щелей. Волновая же модель света, напротив, ведет к совершенно иному предсказанию, если открыты обе щели. Посмотрим, что происходит в этом случае. Представим, что вместо световых волн мы рассматриваем волны на поверхности воды. Это не повлияет на результат, но такие волны более наглядны. Когда волна сталкивается с преградой, то, как показано на рис. 4.7, от каждой щели распространя- Глава 4. Микроскопические странности 73
ется новая волна, похожая на ту, которая возникает, если бросить камешек в пруд. (Это легко проверить, используя картонный лист с двумя прорезями, помещенный в чашку с водой.) Когда волны, идущие от каждой щели, накладываются друг на друга, происходит интересное явление. При наложении двух волновых максимумов высота волны в соответствующей точке увеличивается — она равна сумме высот максимумов двух наложившихся волн. Аналогично, при наложении двух минимумов глубина впадины, образовавшейся в этой точке, также увеличивается. Наконец, если максимум одной волны совпадает с минимумом другой, они взаимно гасят друг друга. (На этом основана конструкция фантастических шумопоглощающих наушников — они определяют форму пришедшей звуковой волны и генерируют другую, форма которой в точности «противоположна» первой, что приводит к подавлению нежелательного шума.) Между этими крайними случаями — максимум с максимумом, минимум с минимумом и максимум с минимумом — расположен весь спектр частичного усиления и частичного ослабления. Если вы с компанией друзей сядете в небольшие лодки, выстроите их в линию параллельно преграде и каждый из вас будет сообщать, насколько сильно его качает при прохождении волны, результат будет похож на тот, который изображен на рис. 4.7. Точки с сильной качкой будут расположены там, где накладываются максимумы (или минимумы) волн, приходящих от разных щелей. Участки с минимальной качкой или полным ее отсутствием окажутся там, где максимумы волны, идущей от одной щели, будут совпадать с минимумами волны, идущей от другой щели. Поскольку фотографическая пластинка регистрирует, насколько сильно она «раскачивается» под влиянием падающего света, из приведенных выше рассуждений, примененных к волновой картине, создаваемой лучом света, следует, что когда открыты обе щели, фотография будет иметь вид, показанный на рис. 4.8. Самые яркие участки на рис. 4.8 представляют области, в которых максимумы (или минимумы) световых волн, пришедших от разных щелей, совпадают. Темными являются участки, в кото- 74 Часть И. Дилемма пространства, времени и квантов рых максимум одной волны складывается с минимумом другой, приводя к взаимному погашению. Такая последовательность светлых и темных полос известна под названием интерференционной картины. Эта фотография существенно отличается от рис. 4.6, и, следовательно, требуется эксперимент, который позволил бы установить, какая из теорий права — корпускулярная или волновая. Подобный эксперимент был выполнен Юнгом, и его результат совпал с картиной, показанной на рис. 4.8, тем самым подтвердив волновую природу света. Ньютоновская теория корпускулярной природы света была отвергнута (хотя потребовалось некоторое время, прежде чем все физики согласились с этим). Доминирующая волновая теория света впоследствии получила надежное математическое обоснование в теории Максвелла. Но Эйнштейн, низвергнувший заслуженную теорию гравитации Ньютона, похоже, возродил ньютоновскую корпускулярную модель света, введя понятие фотонов. Конечно, перед нами по-прежнему стоит вопрос: как объяснить интерференционную картину, показанную на рис. 4.8, с точки зрения корпускулярной теории? На первый взгляд можно предложить следующее объяснение. Вода состоит из молекул Н2О — «частиц» воды. Однако когда огромные количества этих молекул движутся в одном потоке, они могут создавать волны на поверхности воды, с присущими этим волнам интерференционными свойствами, показанными на рис. 4.7. Можно предположить, что в корпускулярной модели света волновые эффекты, например, интерференционные картины, возникают благодаря взаимодействию огромного числа световых корпускул — фотонов. В действительности, однако, микромир устроен гораздо более тонко. Даже если интенсивность источника света на рис. 4.8 начнет уменьшаться вплоть до такого значения, когда в сторону преграды один за другим будут излучаться одиночные фотоны со скоростью, скажем, один фотон в десять секунд, результат на фотопластинке будет выглядеть точно так же, как показано на рис. 4.8. Если вы подождете достаточно долго, чтобы огромное число этих отдельных частиц света прошло через щели и оставило свой след в виде точек на фотопластинках, эти точки образуют показанную на рис. 4.8 интерференционную картину. Это поразительно. Как могут отдельные фотоны, последовательно проходящие через экран и независимо сталкивающиеся с фотопластинкой, «сговориться» и воспроизвести яркие и темные полосы интерференционной картины? Здравый смысл говорит нам, что каждый фотон проходит либо через левую, либо через правую щель, и результирующая картина должна быть похожа на ту, которая показана на рис. 4.6. Но это не так. Если этот факт не поразил вас, это значит, что либо вы уже сталкивались с ним и знаете ему объяснение, либо наше описание является недостаточно наглядным. Если дело в последнем, попробуем взглянуть на это явление еще раз, но под несколько иным углом зрения. Итак, вы закрываете левую щель и пускаете фотоны на преграду, один за другим. Некоторые из них проходят через преграду, некоторые нет. Те, которые прошли, точка за точкой создают изображение на фотопластинке, которое выглядит, как показано на рис. 4.4. Вслед за этим вы проводите эксперимент с новой фотопластинкой, но на этот раз открываете обе щели. Как и следовало ожидать, вы считаете, что это только увеличит число фотонов, прошедших через преграду и попавших на фотографическую пластинку, т. е. на пластинку попадет больше света, чем в первом опыте. Но когда позднее вы изучаете полученную фотографию, вы видите, что наряду с участками, которые были темными в первом опыте и стали светлыми во втором, есть участки, которые были светлыми в первом опыте, а во втором стали темными, как на рис. 4.8. Увеличив число фотонов, попавших на фотопластинку, вы уменьшили яркость некоторых участков. Каким--то образом отдельные фотоны, разделенные во времени, смогли нейтрализовать друг друга. Подумайте о всей неординарности того, что произошло: фотоны, которые прошли через правую щель и попали на пленку в одной из темных полос на рис. 4.8, не смогли сделать этого при открытой левой Глава 4. Микроскопические странности 75 щели (поэтому пленка и осталась темной). Но как могло повлиять на крошечную частицу света, прошедшую через одну щель, то обстоятельство, была ли открыта другая щель? Фейнман однажды заметил, что это так же странно, как если бы вы стреляли по экрану из пулемета, и когда были открыты обе щели, то отдельные, независимо вылетевшие пули каким-то образом нейтрализовали друг друга, оставляя непораженные участки на экране — участки, которые были поражены, когда открытой была только одна щель. Эти эксперименты показали, что частицы света Эйнштейна довольно существенно отличаются от частиц Ньютона. Каким-то образом фотоны — хотя они и являются частицами — обладают также и волновыми свойствами света. Тот факт, что энергия этих частиц определяется параметром, используемым для описания волн, т. е. частотой, является первым признаком того, что это странное объединение действительно имеет место. Однако фотоэффект и эксперимент с двумя щелями еще более озадачивают нас. Фотоэффект показывает, что свет имеет свойства частиц. Эксперимент с двумя щелями демонстрирует, что свет также проявляет интерференционные свойства, характерные для волн. Вместе они показывают, что свет обладает и волновыми, и корпускулярными свойствами. Микромир требует, чтобы при попытке его описания мы отказались от наших интуитивных представлений о том, что любой объект представляет собой либо волну, либо частицу, и чтобы мы учитывали возможность того, что он может быть волной и частицей одновременно. Это один из тех случаев, когда высказывание Фейнмана о том, что «никто не понимает квантовую механику», является особенно актуальным. Мы можем произносить слова типа «корпускулярно-волновой дуализм». Мы можем преобразовать эти слова в математическую модель, которая воспроизведет экспериментальные данные с поразительной точностью. Но добиться глубокого, интуитивного понимания этой ошеломляющей особенности микромира необычайно трудно.
Дата добавления: 2014-11-29; Просмотров: 946; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |