Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Система зажигания




 

Общие сведения

Напряжение, необходимое для пробоя искрового промежутка свечи зажигания, зависит от давления, температуры и состава рабочей смеси, расстояния между электродами свечи, материала и температуры электродов, полярности высокого напряжения. Так, при пуске холодного двигателя пробивное напряжение достигает 16 кВ и более, а при работе прогретого двигателя достаточно 12 кВ.

Воспламенение смеси в цилиндре должно опережать момент прихода поршня в верхнюю мертвую точку (в.м.т.). Это обусловлено тем, то сгорание смеси происходит не мгновенно, а давление газов (продуктов сгорания) должно быть максимальным после перехода поршнем в.м.т. Двигатель развивает максимальную мощность, если наибольшее давление возникает после прохода поршнем в.м.т.

Если смесь воспламеняется позднее, чем это необходимо, ее сгорание происходит в такте расширения. Смесь не успевает сгореть полностью в цилиндре и догорает в выпускном трубопроводе. В результате снижается максимальное давление газов и мощность двигателя. Кроме того, происходит перегрев двигателя и увеличивается количество вредных газов, выбрасываемых в атмосферу.

При слишком раннем воспламенении сгорание смеси происходит в такте сжатия, и максимальное давление в цилиндре возникает до прихода поршня в в.м.т. В результате поршень получает сильные встречные удары, определяемые на слух как металлический стук. Раннее воспламенение смеси приводит к уменьшению мощности двигателя и быстрому износу его деталей.

Угол между положением коленчатого вала, соответствующим моменту искрового разряда между электродами свечи, и положением, при котором поршень находится в в.м.т., называется углом опережения зажигания. Оптимальный угол опережения зажигания зависит от частоты вращения коленчатого вала и нагрузки двигателя. С увеличением частоты вращения коленчатого вала увеличивается скорость движения поршня и, чтобы рабочая смесь успевала сгорать, необходимо увеличивать угол опережения зажигания. Рост нагрузки обусловлен увеличением открытия дроссельной заслонки и характеризуется увеличением наполнения цилиндров. В результате продолжительность сгорания смеси уменьшается и, следовательно, необходимо уменьшить угол опережения зажигания.

Автоматическое регулирование угла опережения зажигания при изменении частоты вращения коленчатого вала и нагрузки двигателя осуществляется центробежным и вакуумным регуляторами. Центробежный регулятор изменяет угол опережения зажигания в зависимости от частоты вращения коленчатого вала, вакуумный регулятор – в зависимости от степени открытия дроссельной заслонки. Начальный угол опережения зажигания, необходимый для надежного пуска двигателя, устанавливают вручную при помощи октан-корректора.

Все три механизма скомпонованы в распределителе, который имеет также прерывательный и распределительный механизмы.

Принцип действия системы зажигания

На современных отечественных автомобилях используются классическая, контактно-транзисторная и бесконтактная системы зажигания.

Основными элементами классической системы зажигания (рис. 6.1) является катушка зажигания 1, свечи 6 и распределитель, объединяющий прерыватель и распределитель. Кулачок 4 прерывателя и роторного распределителя закреплены на общем валу, который приводится во вращение зубчатой передачей от распределительного вала двигателя и вращается с частотой вдвое меньшей, чем коленчатый вал. Кулачок при вращении воздействует на рычажок 3 прерывателя, размыкая контакты 2. Параллельно контактам 2 включен конденсатор С. Ротор распределителя при вращении проходит мимо неподвижных электродов распределителя, число которых равно числу цилиндров двигателя. Каждый электрод соединен проводом с соответствующей свечой.

Катушка зажигания имеет две обмотки – первичную и вторичную. Число витков вторичной обмотки значительно больше числа витков первичной. Соединены обмотки по схеме автотрансформатора. Один конец у них общий, он соединен с подвижным контактом прерывателя. Второй конец вторичной обмотки соединен с ротором распределителя, второй конец первичной обмотки через добавочный резистор Rд (который может отсутствовать) и контакты выключателя зажигания Вз – с положительным выводом аккумуляторной батареи.

Рисунок 6.1 – Схема классической системы зажигания

Принцип действия классической системы зажигания следующий. При включенном выключателе зажигания и замкнутых контактах прерывателя в цепи первичной обмотки катушки зажигания появляется ток. Ток протекает от положительного вывода аккумуляторной батареи через резистор Rд, первичную обмотку катушки зажигания, контакты прерывателя, корпус автомобиля к отрицательному выводу аккумуляторной батареи. Ток первичной обмотки катушки зажигания создает магнитное поле, линии которого, замыкаясь через сердечник катушки, пронизывают витки обеих обмоток.

При вращении коленчатого вала, когда в одном из цилиндров будет заканчиваться такт сжатия рабочей смеси, кулачок своей гранью разомкнет контакты прерывателя. При размыкании контактов ток в первичной обмотке катушки зажигания прекращается и исчезает магнитное поле. Исчезающее магнитное ноле индуктирует в обеих обмотках э.д.с. Так как число витков вторичной обмотки очень большое, индуктируемая в ней э.д.с. может достигнуть 20 кВ, что достаточно для пробоя искрового промежутка свечи. В момент появления высокого напряжения ротор распределителя проходит под неподвижным электродом, соединенным со свечой того цилиндра, в котором заканчивается такт сжатия. В результате между электродами свечи происходит электрический разряд и воспламенение смеси в цилиндре. Ток высокого напряжения протекает от вторичной обмотки через ротор и неподвижный электрод распределителя, проскакивает в виде искры между электродами свечи и через корпус автомобиля, аккумуляторную батарею и первичную обмотку, а затем возвращается на вторичную обмотку катушки зажигания.

При размыкании контактов прерывателя в первичной обмотке индуктируется э.д.с. самоиндукции, достигающая 200-300 В. Под действием э.д.с. между контактами может возникнуть ток, проявляющийся в виде дугового разряда. При этом сильно разрушаются рабочие поверхности контактов. Чтобы исключить это вредное влияние, параллельно контактам включают конденсатор С. При наличии конденсатора в момент размыкания контактов происходит его заряд. Затем конденсатор разряжается через первичную обмотку, резистор Rд и аккумуляторную батарею. Таким образом, в значительной степени устраняется искрообразование между контактами прерывателя и обеспечивается их долговечность.

Добавочный резистор Rд позволяет улучшить работу системы зажигания при пуске двигателя. При включении стартера напряжение аккумуляторной батареи сильно уменьшается, что приводит к уменьшению тока в первичной и пониженному напряжению во вторичной цепи. Особенно сильно это сказывается при пуске зимой, когда характеристики аккумуляторной батареи ухудшаются, а для пробоя искрового промежутка свечей требуется более высокое напряжение. Поэтому при включении стартера при помощи специальных контактов (рис. 6.1, 6.2), имеющихся на реле стартера или дополнительном реле, резистор Rд закорачивается. Таким образом, на время пуска обеспечивается необходимая сила тока в первичной цепи, несмотря на пониженное напряжение аккумуляторной батареи.

Рисунок 6.2 – Принципиальная схема контактно-транзисторной (а) и бесконтактной (б) систем зажигания

С увеличением частоты вращения коленчатого вала двигателя уменьшается время замкнутого состояния контактов прерывателя, что приводит к уменьшению силы тока первичной цепи в момент размыкания контактов и, следовательно, вторичного напряжения. Такая же закономерность наблюдается с увеличением числа цилиндров.

Чтобы обеспечить высокое вторичное напряжение для высокооборотистых двигателей с большим числом цилиндров, необходимо увеличивать силу первичного тока. Однако при увеличении силы тока разрыва более 3,5А возникает сильное искрение на контактах прерывателя, что приводит к уменьшению их срока службы и снижению надежности системы зажигания.

Указанные недостатки классической системы зажигания исключаются применением контактно-транзисторной системы зажигания. Основной особенностью такой системы (рис. 6.2, а) является то, что через контакты прерывателя проходит небольшой по силе ток управления транзистором. Ток первичной обмотки при этом прерывается не контактами прерывателя, а переходом эмиттер-коллектор транзистора. Так как транзистор разгружает контакты прерывателя, отпадает необходимость в искрогасящем конденсаторе.

Работает схема следующим образом. При замыкании контактов 1 прерывателя база транзистора 2 через корпус соединяется с отрицательным выводом аккумуляторной батареи. По цепи базы пойдет ток, и транзистор откроется. Открытый транзистор замкнет цепь первичной обмотки катушки зажигания 3 и по ней пойдет ток. При размыкании контактов прерывателя транзистор закроется, разрывая цепь обмотки катушки зажигания. При этом во вторичной обмотке будет индуктироваться э.д.с. большей величины. Посредством распределителя высокое напряжение подается на электроды свечи, происходит пробой искрового промежутка и воспламенение смеси. В реальной схеме контактно-транзисторной системы зажигания для коммутации первичной цепи применяется транзисторный коммутатор, в котором, кроме транзистора, имеется ряд элементов. Они служат для защиты транзистора от перенапряжений и улучшения условий его переключения.

Контактно-транзисторная система зажигания, исключая износ контактов, не позволяет избежать другого вредного эффекта, присущего классической системе зажигания. Этот эффект характеризуется дребезгом контактов, который возникает при необходимости подачи высокого напряжения с высокой частотой. При этом дребезг контактов приводит к уменьшению вторичного напряжения. Так, для многоцилиндровых высокооборотных двигателей внутреннего сгорания требуется такая частота искрообразования на свечах, которая при применении контактного прерывателя может быть достигнута при применении двух независимых систем зажигания (двойные прерыватели, две катушки зажигания и т.д.). Применение бесконтактных систем зажигания позволяет получить стабильное искрообразование на свечах и при высоких частотах вращения коленчатого вала. Бесконтактный датчик системы зажигания не подвержен механическим износам, что свойственно контактным узлам ввиду наличия трущихся частей. Поэтому момент зажигания с увеличением пробега в бесконтактной системе не меняется, и она не требует обслуживания.

Основной особенностью бесконтактной системы зажигания является тип и конструкция его датчика. Магнитоэлектрический датчик (рис. 6.2, б) содержит постоянный магнит 2 в виде зубчатого ротора и обмотку статора 1, намотанную на сердечник. При вращении зубчатого ротора в обмотке статора 1 индуктируется переменная э.д.с. Когда один из зубьев ротора приближается к обмотке, э.д.с. в ней возрастает и при совпадении зуба со средней линией обмотки достигает максимума, затем при удалении зуба э.д.с. быстро меняет знак и увеличивается в противоположном направлении до максимума. При появлении на обмотке 1 положительной полуволны в транзисторе 3 протекает ток базы, он открывается, и по первичной обмотке катушки зажигания 4 пойдет ток. При изменении знака напряжения в обмотке 1 транзистор закроется, разрывая цепь обмотки катушки зажигания. При этом во вторичной цепи возникает уже рассмотренный процесс образования высокого напряжения, необходимого для появления искры на соответствующей свече зажигания. Число пар полюсов магнита датчика должно соответствовать числу цилиндров двигателя. Как правило, системы зажигания снабжают устройствами для уменьшения радиопомех. Ими являются подавительные резисторы в наконечниках, соединяющих высоковольтные провода со свечами, или подавительный резистор в роторе и крышке распределителя. Эту роль могут также выполнять высоковольтные провода с распределительным сопротивлением.

 




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 1336; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.