Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Три вопроса




Здесь читатель может спросить: «Будь я существом, живущим на Вселенной Садового шланга, я просто измерил бы длину окружности шланга рулеткой и однозначно определил бы радиус — без всяких „но" и „если". Так к чему вся эта чепуха о невозможности отличить два разных радиуса? Кроме того, разве теория струн не распрощалась с масштабами меньше планковской длины — зачем же эти примеры циклических измерений с радиусами в доли планковской длины? И, если уж на то пошло, кого волнует эта двумерная вселенная Садового шланга? Что все это добавляет к пониманию случая всех измерений?»

Начнем с третьего вопроса; ответ на него поставит нас лицом к лицу с двумя первыми.

Хотя обсуждение касалось вселенной Садового шланга, ограничение одним протяженным и одним циклическим пространственными измерениями было выбрано лишь для простоты. Если бы мы рассматривали три протяженных пространственных измерения и шесть циклических измерений — простейшее из всех многообразий Калаби— Яу, — результат был бы в точности тем же самым. У каждой окружности есть радиус, и если его заменить обратным радиусом, получится физически идентичная вселенная.

Этот вывод можно даже продвинуть на один гигантский шаг вперед. В нашей Вселенной наблюдаемы три пространственных измерения, каждое из которых, согласно астрономическим наблюдениям, имеет протяженность порядка 15 миллиардов световых лет (световой год равен примерно 9,46 триллионам километров, так что это расстояние равно примерно 142 миллиардам триллионов километров). Как отмечалось в главе 8, у нас нет данных о том, что происходит за этими границами. Мы не знаем, уходят ли эти измерения в бесконечность или замыкаются сами на себя, образуя огромные окружности — все это может иметь место за пределами чувствительности современных телескопов. Если справедливо последнее предположение, то путешествующий все время в одном направлении астронавт в конце концов обойдет вокруг Вселенной, как Магеллан вокруг Земли, и прилетит назад в исходную точку.

Следовательно, хорошо знакомые протяженные измерения могут тоже иметь форму окружностей, и поэтому они попадают под действие принципа физической неразличимости пространств с радиусами R и 1/ R теории струн. Приведем несколько грубых оценок. Если привычные нам измерения являются циклическими, то их радиусы должны быть, как говорилось выше, около 15 миллиардов световых лет, т.е. примерно R = 1061 в единицах планковской длины, и эти радиусы должны увеличиваться при расширении Вселенной. Если теория струн верна, то картина физически эквивалентна ситуации, в которой привычные нам измерения имеют невообразимо малый радиус порядка 1 /R = 1/1061 = 10--61 в единицах планковской длины! И это — хорошо нам знакомые измерения в альтернативном описании по теории струн. На самом деле, на этом взаимном языке эти крошечные окружности будут со временем становиться еще меньше, так как 1 /R уменьшается, когда R растет. Кажется, мы основательно сели в лужу. Как такое возможно в принципе? Как двухметровый человек может втиснуться в такую невообразимо микроскопическую вселенную? Как такая невидимая крупинка может быть физически эквивалентной огромным просторам небес?


166 Часть IV. Теория струн и структура пространства-времени

И, более того, здесь сам собой перед нами встает второй вопрос. Считалось, что теория струн налагает запрет на зондирование Вселенной на масштабах, меньших планковской длины. Но если радиус R больше планковской длины, то 1 /R с необходимостью меньше нее. Так что же происходит на самом деле? Ответ, который также затрагивает первый из трех поставленных вопросов, выдвигает на первый план важные и нетривиальные свойства пространства и расстояния.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 359; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.