КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Энтропия черной дыры
Многие годы самые лучшие специалисты в области теоретической физики рассуждали о возможности процессов с разрывом пространства и о связи между черными дырами и элементарными частицами. Хотя ранее такие рассуждения могли казаться научной фантастикой, открытие теории струн, в результате которого стало возможным объединение общей теории относительности и квантовой теории, позволило уверенно выдвинуть эти вопросы на передний край современной науки. Успехи теории струн вдохновляют на исследование вопроса о том, не могут ли и другие таинственные свойства Вселенной, десятилетиями не поддававшиеся решению, уступить натиску всемогущей теории струн? Важнейшим из этих свойств является энтропия черной дыры. Именно в области изучения энтропии черной дыры теория струн наиболее выразительно продемонстрировала свою гибкость и дала возможность разрешить важнейшую проблему, поставленную еще четверть века назад. Энтропия — это мера беспорядка или хаотичности. Например, если рабочее ме- Глава 13. Черные дыры с точки зрения теории струн и М-теории 217 сто завалено открытыми книгами, недочитанными статьями, старыми газетами и еше не попавшими в мусорное ведро рекламными проспектами, то степень его беспорядка велика, и оно имеет высокую энтропию. И наоборот, если статьи рассортированы по темам в разные папки, газеты аккуратно разложены по номерам, книги расставлены по алфавиту, а все ручки и карандаши стоят в своих подставках, то рабочее место находится в хорошем порядке, и имеет низкую энтропию. Этот пример иллюстрирует суть понятия энтропии, однако ученые дали ей строгое количественное определение, позволяющее описывать энтропию тел с помощью численных значений. Чем больше численное значение, тем больше энтропия, и наоборот. Хотя подробности вычислений не очень просты, это число, грубо говоря, равно числу всевозможных перегруппировок элементов данной физической системы, при которых ее общий вид не изменяется. Если рабочее место прибрано, то почти всякая перестановка — изменение порядка газет, книг, статей, или перемещение ручки из держателя на стол — приведет к нарушению порядка. С другой стороны, если на рабочем месте беспорядок, то при множестве вариантов перекладываний газет, статей и т.д. беспорядок так и останется беспорядком, и общий вид рабочего места не изменится. Поэтому в последнем случае энтропия велика. Конечно, примеру перегруппировки предметов на рабочем месте с его нечетким определением того, какие именно перегруппировки «не изменяют общий вид», не достает научной точности. На самом деле, в строгом определении энтропии рассматриваются микроскопические квантово-механические параметры, описывающие элементарные физические составные части системы, и для этих параметров вычисляется число возможных перегруппировок, при которых итоговые макроскопические параметры (например, энергия или температура) не изменяются. Детали несущественны, если понятен факт, что квантово-механическая энтропия является строгим понятием, позволяющим точно измерять общий беспорядок в физических системах. В 1970 г. Якоб Бекенштейн, в то время учившийся в аспирантуре Принстонского университета у Джона Уилера, сделал смелое предположение. Он выдвинул замечательную идею о том, что черные дыры обладают энтропией, которая очень велика. Бекенштейн опирался на общепризнанное и хорошо проверенное второе начало термодинамики, согласно которому энтропия системы постоянно растет. Все движется в направлении еще большего беспорядка. Даже если физик сделает, наконец, уборку своего рабочего места, уменьшив энтропию, полная энтропия, в которую входит энтропия самого физика и энтропия воздуха в комнате, увеличится. Действительно, на уборку рабочего места уходит энергия, и эта энергия вырабатывается внутри тела физика при расщеплении молекул в упорядоченных жировых складках тела, переходя в мускульную силу. Кроме того, при уборке его тело отдает теплоту, и окружающие молекулы воздуха увеличивают скорость, приводя к увеличению беспорядка. Если учесть все подобные эффекты, они с лихвой компенсируют уменьшение энтропии рабочего места, так что полная энтропия возрастет. Но что произойдет, рассуждал далее Бекенштейн, если сделать уборку рабочего места вблизи горизонта событий черной дыры и откачать насосом все разогнанные молекулы, образовавшиеся во время уборки, в бездонный омут черной дыры? Можно поступить еще более радикально: откачать весь воздух, все содержимое рабочего стола вместе со столом, да и самого бедного физика, оставив пустую, зато идеально прибранную комнату. Так как очевидно, что энтропия в комнате уменьшится, Бекенштейн пришел к выводу, что второе начало термодинамики не будет нарушено лишь в случае, если у черной дыры тоже есть энтропия, и эта энтропия постоянно растет по мере засасывания в черную дыру материи, компенсируя наблюдаемое уменьшение энтропии снаружи черной дыры. На самом деле Бекенштейну для усиления своей аргументации удалось даже привлечь знаменитый результат Стивена Хокинга, который показал, что площадь горизонта событий черной дыры, т. е. площадь по- 218 Часть IV. Теория струн и структура пространства-времени верхности вокруг черной дыры, после пересечения которой нет пути назад, всегда увеличивается при любых физических взаимодействиях. Хокинг продемонстрировал, что если в черную дыру попадет астероид, или если на черную дыру попадет излучение с поверхности близкой звезды, или если две черные дыры столкнутся и объединятся, то полная плошадь горизонта событий черной дыры обязательно увеличится. Для Бекенштейна неуемный рост этой площади был связующим звеном с неумолимым ростом энтропии согласно второму началу термодинамики. Он предположил, что площадь горизонта событий черной дыры и есть точная мера ее энтропии. Однако при ближайшем рассмотрении можно найти два объяснения тому, почему большинство физиков считали, что идея Бекенштейна неверна. Во-первых, черные дыры кажутся одними из наиболее упорядоченных и организованных объектов во всей Вселенной. Как только измерена масса, заряд и спин черной дыры, ее точную идентификацию можно считать завершенной. При столь малом числе определяющих свойств кажется, что у черных дыр нет достаточной структуры, в которой мог бы возникнуть беспорядок. Черные дыры казались слишком простыми для поддержания беспорядка: если на столе лежат лишь книга и карандаш, трудно разгуляться и устроить на нем хаос. Вторая причина того, что аргументы Бекенштейна воспринимались плохо, заключается в следующем. Как обсуждалось выше, энтропия является квантово-механическом понятием, а черные дыры до последнего времени относили к враждебному лагерю традиционной общей теории относительности. В начале 1970-х гг., когда еше не был известен способ объединения теории относительности и квантовой теории, обсуждение энтропии черной дыры казалось, по меньшей мере, нелепым.
Дата добавления: 2014-11-29; Просмотров: 730; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |