Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Оболочки Земли и их состав. Состав планет солнечной системы




Строение и состав земной коры

Оболочки Земли и их состав. Состав планет солнечной системы

Практическое значение изоморфизма

Наиболее важные в настоящее время направления использования явления изоморфизма в различных отраслях хозяйства:

1. Значительная часть редких и рассеянных элементов добывается из изоморфных смесей. Значительное количество гафния добывается из циркона, где гафний находится в изоморфной смеси к цирконию. В изоморфной смеси к цирконию могут находится иттрий, тяжелые лантаноиды. Рений Re, сверхрассеянный элемент, благодаря изоморфизму с молибденом, был обнаружен в молибденитах (содержания до 2х10-3%, медно-молибденовые руды Коунрада), откуда он и извлекается. Потенциальные возможности изоморфных примесей как источника многих химических элементов (часто даже добываемых попутно) чрезвычайно велики.

2. При существующих в настоящее время методиках извлечения «попутных элементов» значительная часть этих элементов уходит в отвалы, вылетает с дымом из труб, удаляется с промышленными стоками. Будучи освобожденными из кристаллических решеток, изоморфные примеси начинают самостоятельную миграцию в биосфере, точнее, в ноосфере. Поэтому, отработка руд с развитым изоморфизмом часто способствует специфическому загрязнению территорий, прилегающих к рудникам, обогатительным фабрикам, металлургическим комбинатам. В связи с этим, в этих районах почвы, воды, растения имеют повышенные концентрации многих элементов, не извлекаемых из руд.

3. Явления изоморфизма следует учитывать при использовании удобрений, основная часть которых изготавливается из природных фосфатов и апатитов, в которых в виде изоморфных примесей содержится целый ряд редких и редкоземельных элементов, включая литий, стронций, иттрий и др. Несовершенные технологии способствуют накоплению этих элементов в удобрениях, с которыми они поступают в почвы, а затем при разложении удобрений – в воды и различные живые организмы.

ЛЕКЦИЯ 5

Земля як геохімічна система. Будова і склад Землі та інших планет.

3. Состав гидросферы и атмосферы Земли.

В середине XXв английскими геофизиками Г.Джеффрисом и К.Булленом по сейсмическим данным были выделены верхняя мантия (до 400км), переходная зона (400-1000км) и нижняя мантия (1000-2900км).

На рис. 5.1 представлено внутреннее строение Земли с изменением плотности земного вещества. В центре Земли расположено внутреннее твёрдое ядро ( слой G). Оно имеет радиус около 1300 км и максимальную плотность. Далее идёт жидкое внешнее ядро (E) которое простирается до 3500 км от центра Земли. Жидкое и твёрдое ядро разделяет переходный слой (F) около 200 км. Твердое ядро как бы “плавает” в жидком ядре.

На границе ядра наблюдается скачкообразное падение скорости сейсмических волн (от 13.6 до 8 км/с). Внутри ядра скорость постепенно возрастает и увеличивается скачком на границе внутреннего ядра (до 11.3 км/с). В твёрдом ядре скорость распространения сейсмических волн практически не меняется. Мощность мантии 2900 км. Ядро и мантию разделяет переходный слой (D’) около 200 км, в котором скачком снова изменяются характеристики среды. Нижняя мантия - слой D (толщиной 2000 км). Верхняя мантия делится на слои В и С (толщиной 850-900 км).

глубине около 100 км под континентами и на глубине около 50 км под океанами. Нижняя граница астеносферы находится на глубине 250-350 км. Вязкость вещества в астеносфере резко уменьшается по сравнению с окружающими астеносферу слоями, а температура вещества – наоборот, повышается до 1500º - 1800ºС и близка к температуре плавления. В астеносфере обычно лежат очаги, подпитывающие вулканы.

Лежащий ниже астеносферы слой С называют слоем Голицына, он характеризуется быстрым нарастанием скорости сейсмических волн с глубиной. Предполагается также увеличение плотности вещества с глубиной.

В нижней мантии плотность вещества постепенно возрастает, а на границе ядра скачкообразно меняется в переходной зоне до 10 г/см3. Затем плотность с глубиной продолжает постепенно расти - до 12.5 г/см3 в центре Земли. Давление растёт с глубиной, но температура мантии не превышает температуру плавления.

Наружная сфера “твёрдой Земли” - земная кора. Это самая неоднородная и сложная земная сфера.

Кора отделяется от мантии поверхностью Мохоровичича (Мохо), именно здесь скачком изменяется плотность вещества (с 2.9-3.0 г/см3 до 3.1 - 3.5 г/см3) и возрастают скорости сейсмических волн.

Слой В называют слоем Гутенберга или астеносферой. Верхняя граница Астеносферырасположена на

Верхняя мантия неоднородна, так как скорость прохождения сейсмических волн в ней изменяется от 7,5 до 9,0км/с. Её термодинамические параметры также изменяются в пространстве. Например, в юго-западной части Тихого океана на уровне поверхности Мохо температура не превышает 3000С, а на территории Альпийской складчатой зоны юга СССР равна 800-10000С. Меняется и величина давления (в 6-7 раз).

На глубинах 100-200км расположен вязкий пластичный (расплавленный?) слой с пониженной скоростью распространения сейсмических волн, получивший название астеносферы. Последняя ярко выражена в складчатых областях и местами почти отсутствует на платформах.

Выше астеносферы вещество находится в твёрдом состоянии. Эту оболочку часто именуют литосферой. Данный термин используется и как синоним твёрдой земной коры (не включая в литосферу верхнюю мантию). Учитывая, что тектонические и магматические явления связаны с земной корой и верхней мантией, их нередко также объединяют в тектоносферу Земли.

В.С.Соболев полагает, что в верхней мантии преобладают гипербазиты, которые чередуются с основными породами (эклогитами). Плавление вещества происходит на глубинах 100-150км (т.е. в астеносфере), причём магмы образуются в результате частичного или полного плавления основных пород. Согласно модели А.Рингвуда, составу верхней мантии отвечает смесь трёх частей ультраосновных пород и одной щёлочного базальта. Эту смесь он назвал пиролитом (пироксено-оливиновая порода). Содержание основных металлов в пиролите (кроме Fe) соответствует их содержанию в хондритах и солнечной фотосфере. При подъёме пиролита к поверхности (например, в зоне срединно-океанических хребтов) он частично расплавляется, образуется базальтовая магма и остаточный нерасплавленный перидотит.

При изучении верхней мантии используются наряду с геофизическими и петрологическими и геохимические методы (изучение газов, поступающих по глубинным разломам и др.). Для установления мантийной природы газов индикаторное значение имеют изотопные отношения гелия (3Не:4Не), аргона, углерода, серы и т.д. Глубинные газы, вероятно, мантийного происхождения установлены в Исландии и других рифтовых зонах. Для них характерны СО, Н2, СН4.

 

 

.

 

Рис. 5.1. Строение Земли с глубинами геосфер и изменение плотности земного вещества с глубиной

 

Образование базальтового слоя земной коры большинство исследователей связывают с дифференциацией верхней мантии. А.П.Виноградов предполагает, что в верхней мантии за счёт радиоактивного распада существуют подвижные локальные очаги расплавленных пород. Если температура на верхней в нижней границе такого очага различна, то в расплаве возникает конвекция, легкоплавкие компоненты двигаются кверху, опережая тугоплавкие.

А.П.Виноградов и А.А.Ярошевский провели эксперимент с хондритамн. Хондриты в форме цилиндра последовательно расплавляли на разных участках (снизу вверх). В результате такого зонного плавления в нижней части цилиндра образовалось стекло, по составу отвечающее ультраосновным породам, а в верхней – базальтам. По Виноградову, механизм выплавления вещества земной коры из верхней, мантии аналогичен «зонной плавке», хорошо изученной в металлургии. Для объяснения формирования базальтового слоя привлекаются и другие механизмы. Так, некоторые учёные считают, что базальтовый слой мог образоваться за счёт селективного выплавления из мантии и всплывания базальтовых астенолитов.




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 739; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.