Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Композитные материалы




Композиционный материал. Композиционный материал (композит, КМ) — неоднородный сплошной материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов.

Механическое поведение композиции определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных компонентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композиции, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композициях, в отличие от однородных металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Для создания композиции используются самые разные армирующие наполнители и матрицы. Это — текстолит, слоистые пластики из бумаги или ткани, склеенной термореактивным клеем, стекло- и графитопласт (ткань или намотанное волокно из стекла или графита, пропитанные эпоксидными клеями), фанера... Есть материалы, в которых тонкое волокно из высокопрочных сплавов залито алюминиевой массой. Булат — один из древнейших композиционных материалов. В нем тончайшие слои (иногда нити) высокоуглеродистой стали «склеены» мягким низкоуглеродным железом.

В последнее время материаловеды экспериментируют с целью создать более удобные в производстве, а значит — и более дешёвые материалы. Исследуются саморастущие кристаллические структуры, склеенные в единую массу полимерным клеем (цементы с добавками водорастворимых клеев), композиции из термопласта с короткими армирующими волоконцами и

Композиционный материалнеоднородный сплошной материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов. Сплавы с направленной кристаллизацией эвтектических структур также представляют собой композитные материалы

Композитные материалы своим прообразом имеют широко известный железобетон, представляющий собой сочетание бетона, работающего на сжатие, и стальной арматуры, работающей на растяжение, а также полученные в 19 в. прокаткой слоистые материалы.

Успешному развитию современных композитных материалов содействовали: разработка и применение в конструкциях волокнистых стеклопластиков, обладающих высокой удельной прочностью; открытие весьма высокой прочности, приближающейся к теоретической; нитевидных кристаллов и доказательства возможности использования их для упрочнения металлических и неметаллических материалов; разработка новых армирующих материалов - высокопрочных и высокомодульных непрерывных волокон бора, углерода, А12ОЗ, SiC и волокон других неорганических тугоплавких соединений, а также упрочнителей на основе металлов.

В технике широкое распространение получили волокнистые композитные материалы, армированные высокопрочными и высокомодульными непрерывными волокнами, в которых армирующие элементы несут основную нагрузку, тогда как матрица передаёт напряжения волокнам. Волокнистые композитные материалы, как правило, анизотропны. Механические свойства композитных материалов определяются не только свойствами самих волокон, но и их ориентацией, объёмным содержанием,

Способностью матрицы передавать волокнам приложенную нагрузку и др.
Диаметр непрерывных волокон углерода, бора, а также тугоплавких
соединений (В4С, SiC и др.) обычно составляет 100-150 мкм.

Важнейшими технологическими методами изготовления композитных
материалов являются: пропитка армирующих волокон матричным
материалом; формование в пресс-форме лент упрочнителя и матрицы,
получаемых намоткой; холодное прессование обоих компонентов с
последующим спеканием, электрохимическое нанесение покрытий на
волокна с последующим прессованием; осаждение матрицы плазменным
напылением на упрочнитель с последующим обжатием; пакетная
диффузионная сварка монослойных лент компонентов; совместная прокатка
армирующих элементов с матрицей и другие.

Весьма перспективны композитные материалы, армированные нитевидными кристаллами (усами) керамических, полимерных и др. материалов. Размеры усов обычно составляют от долей до нескольких мкм по диаметру и примерно 10-15 мм по длине.

Области применения композитных материалов многочисленны; кроме
авиационно-космической, ракетной и других специальных отраслей техники,
композитные материалы могут быть успешно применены в энергетическом
турбостроении, в автомобильной промышленности - для деталей двигателей
и кузовов автомашин; в машиностроении - для корпусов и деталей машин; в
химической промышленности - для автоклавов, цистерн, аппаратов
сернокислотного производства, ёмкостей для хранения и перевозки
нефтепродуктов и др.




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 856; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.