КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Exercise 6. Read and smile
The Farmer and the Apple Tree A farmer once had a friend who was famous for wonderful apple trees which he grew. One day this friend gave the farmer a fine young tree and told him to take it home and plant it. The farmer was pleased with the gift, but when he got home he did not know how to plant it. If he planted it near the road, people might steal the fruit. If he planted it in his field, his neighbours might come at night and rob (грабить) him. If he planted it near the house, his own children might steal the apples. Finally he planted the tree deep in the woods where no one could see it. But naturally the tree couldn't grow without sunlight and suitable soil. In time, it withered (засыхать) and died. Later his friend was criticising him for planting the tree in such a poor place. «What is the difference», the farmer said. «If I had planted the tree near the road, people would have stolen the fruit. If I had planted it in my field, my neighbours would have come at night and robbed me. If I had planted it near my house, my own children would have stolen the apples». «Indeed! But at least someone could have enjoyed the fruit», said his friend. «Now you have robbed everyone of the apples, and you have destroyed a fine tree». A farmer's wife spent most of her time wishing for things which she did not possess. She wished she were beautiful; she wished she were rich; she wished she had a handsome (красивый) husband. Therefore one day fairies (волшебницы) decided to give her three wishes as an experiment. The farmer and his wife talked for a long time over what she would wish for. But the farmer's wife suddenly became a little hungry (голодный) and wished she had some sausages to eat. At once her plate was full of sausages. Then a heated argument began, because her husband said his wife had wasted one of the valuable wishes on such a cheap thing as sausages. The argument grew hotter, and finally the wife cried that she wished the sausages were hanging from her husband's nose. At once a row of sausages flew to her husband's nose and stayed there. Nor could they be removed. Now there was the only one thing the poor woman could do. She really loved her husband and so she had to spend her third wish in removing the sausages from his nose. Thus, except for the few sausages, she got nothing from her three wishes. Text 12B Прочитайте и переведите текст без словаря. Назовите наиболее практичные на ваш взгляд исследования на Международной космической станции. Benefits of Building the International Space Station When studying sound, you go into a quiet room. When studying light, you go into a dark room. When studying the effects of gravity, you would like to go into an «anti-gravity» room. Since there is no such thing on Earth, we have the International Space Station. By flying around Earth at about 17,500 mph the station and everything in it remain in orbit, a continuous free fall around the planet. In orbit, forces are balanced and the effects of gravity are essentially removed. The result is microgravity, one of the unique phenomena of the ISS environment that promises new discovery. Thus, the ISS allows long-term exposure to a world nearly unexplored. Gravity affects everything. From our bodies to the materials we use to build cars and buildings, to the flames we use to heat our homes, our world is controlled by gravity. Even flames burn differently without gravity. Reduced gravity reduces convection currents, the currents that cause warm air or fluid to rise and cool air or fluid to descend on Earth. This absence of convection changes the flame shape in orbit and allows studies of the combustion process that are impossible on Earth. The absence of convection allows molten metals or other materials to be mixed more thoroughly in orbit than on Earth, opening the way to a whole new world of composite materials. Scientists plan to study this field, to create better metal alloys and more perfect materials for applications such as computer chips. Investigations that use lasers to cool atoms to near absolute zero may help us understand gravity itself. While investigating our surroundings, we have been limited, until recently, to accepting gravity as a given factor in all our studies. History shows that changing what once was constant can lead to revolutionary discoveries. The 19th century saw temperature and pressure become controlled in new ways to use steam power and revolutionize the way we live. The 21st century offers the hope of controlling gravity's effects to understand why things behave the way they do. Observing and understanding this behaviour is key to new discoveries in many scientific disciplines and using that knowledge is key to the im- provement of life on Earth. The station will allow mankind to perform research that may result in new medicines, materials and industries on Earth and will benefit people all over the world. The Space Station Mir gave us a platform for long-term micro-gravity research, and important knowledge about how to live and work in space. Like all research, we must proceed one step at a time. As we open one door, answering one question, we are faced with the opportunity of more doors, more questions. The ISS is the next step in that journey of discovery, and represents a quantum leap (скачок) in our capability to conduct research on orbit. In space, electrical power is key to the quantity and quality of research. When completed, the ISS's enormous solar panels will supply 60 times more power for science than did Mir. This and the large space available for experiments will provide scientists with unprecedented access to this unique environment. Aboard the ISS scientists will explore basic questions in the fields of biotechnology, biomedical research, fluid physics, fundamental biology, physics, Earth science and space science. Observations of the Earth from orbit are expected to help the study of large-scale, long-term changes in the environment. The effects of air pollution, such as smog over cities; the cutting and burning of forests, and of water pollution are visible from space and can provide a global perspective unavailable from the ground. Thanks to its research and technology the station is certain to serve as an absolutely essential step in preparation for future human space exploration. Text 12C Прочитайте текст и опишите жилые отсеки Шаттла и Международной космической станции. Living Aboard the Space Shuttle and the ISS We often see the cosmonauts carry out their complicated work in space, but what do they do in their off-duty hours? What do they eat, where do they sleep? One of the main features of the Shuttle is the relatively low forces of gravity during launch and reentry. These are about 3 g, that is within the limits that can be withstood by people. Its living accommodation is relatively comfortable. The crew cabin is 71.5 m. There are two floors inside the cabin. On the top level, the commander and pilot monitor and control sophisticated equipment. Behind their seats is a work area where the crew can carry out experiments. The bottom level is the living area. It contains facilities for sleeping, eating and waste disposal. Living in such a kind of cabin requires only ordinary clothing. Air pressure is the same as the Earth's at sea level. This air is made of 80 % nitrogen and 20 % oxygen. The air is cleaner than the Earth's. Temperature can be regulated between 16 and 32 °C. The Shuttle meals are eaten in a small dining area consisting of a table and restraints (ограничители) which function as chairs while eating in zero-gravity. Meals are served in a special tray which separates different food containers and keeps them from floating around in the weightless cabin. Most foods can be eaten with ordinary spoons and forks as long as there are no sudden starts and stops. Just as on Earth recreation and sleep are important to good health in space. Different games, books and cassette-recorders to listen to music are available. In zero-gravity there is no «up» position and the cosmonaut is oriented in the sleeping bag as if he or she were sleeping up. Now beds are built into the walls with an individual light, communications, fan, sound suppression, blanket and sheets. They even have pillows. Experiences on the space shuttle have helped prepare astronauts for life aboard the International Space Station. Let's imagine the life at the station in several years. Life-support systems on the ISS can supply cleaner air, purer water, better food and more sanitary toilet facilities than on the space shuttle. Life aboard the station may not be easy, but it is significantly healthier and more pleasant than in the past, allowing astronauts to focus on the scientific research and station maintenance that occupy them for about 9 hours a day. The kitchen on the station, for the first time in space history, has refrigerators and freezers. It may not sound like much, but it is a giant step forward. For the first 30 years in space, all food was kept at room temperature. Only now, in the 21st century, can refrigerator allow NASA to supply milk to help with bone loss in space flight. A glass of nice cold milk was asked for years. And the refrigerator proved to be an easier solution than a lot of experiments to make good powdered (порошковое) milk for a number of years. Later in the day, thanks to another kitchen appliance, cosmonauts will eat a frozen dinner just like the ones sold in supermarkets. The combination convection/microwave oven automatically thaws (размораживать) your food (using heat), than heats it with microwaves (just as they do on Earth). The refrigerator, freezer, and oven mean that astronauts eat a healthier diet. The shuttle food was low in fiber. «The ISS food can overcome that with salads, fruit, vegetables, apples, oranges, etc.,» a space expert had predicted. Now, with these food delivered by the space shuttle a few times a year, you no longer have to take special tablets. There is no dishwasher in the kitchen. Instead, you wash your magnetic silverware (столовые приборы) with antiseptic towelet-tes (салфетка). It does not seem very hygienic, but the shuttle astronauts just had to lick their silverware clean. The empty food containers will be either ejected into space to burn up on re-entry to the atmosphere or returned to Earth on the shuttle. The next step in life support will be a completely closed air-and-food cycle, with plants grown in space. Plants and microorganisms could even help remove contaminants from the water supply. It is that sort of research that will be necessary if people are ever to establish settlements far beyond Earth. Biological approaches to supplying food, water, and air could not only save power aboard the station, but could also reduce the number of resupply trips required. May be some day astronauts will have fresh bread on the station. But even with today's frozen dinners, they already spend 4 hours a day on meals and hygiene. Exercise takes 2 hours more a day. That leaves them just an hour of free time for the simple pleasures of life in space: The view of Earth through the window. A letter e-mailed from their family. Microwave popcorn with a movie. And the friendship of the crew members with whom they share this tiny world. Text 12D Прочитайте текст, выскажите свое мнение о его содержании. Time Travel and New Universes It is known that for a long time well before Albert Einstein scientists were studying the ideas that seemed strange. Consider a few of such ideas now accepted by the scientific community: clocks that tick slower when they are on rockets in outer space, black holes with the mass of a million stars compressed into a volume smaller than that of atom and subatomic particles whose behaviour depends on whether they are being watched. But of all strange ideas in physics, perhaps, the strangest one is the hole in the structure of space and time, a tunnel to a distant part of the universe. American researchers have determined that it will apparently be possible in principle for mankind to create an entirely new universe by using the idea of wormhole (ход, прорытый червем; червоточина) connection. Such a universe will automatically create its own wormhole, squeeze through it, and then close the hole after it. Although to many people such an idea may seem useless and fantastic, it can help scientists to develop their imagination and explore how flexible the laws of physics are. It is such an idea that could give answers to some of the fundamental questions of cosmology: how the universe began, how it works and how it will end. The idea of wormhole comes directly from the accepted concepts of general relativity. In that theory A.Einstein proved that very massive or dense objects distort space and time around them. One possible distortion is in the form of a tube that can lead anywhere in the universe — even to a place billions of light years away. The name «wormhole» comes about by analogy: imagine a fly on an apple. The only way the fly can reach the apple's other side is the long way over the fruit's surface. But a worm could make a tunnel through the apple and thus shorten the way considerably. A worm-hole in space is the same kind of tunnel; it is a shortcut (кратчайшее расстояние) from one part of the universe to another that reduces the travel time to about zero. In fact, instantaneous travel leads to the idea of wormhole as time machine. If it were possible to move one end of a wormhole at nearly the speed of light, then, according to general relativity, time at that end would slow down and that part of the tunnel would be younger than the other end. Anything moving from the faster-aging end of the wormhole to the slower one would essentially go backward on time. The type of travel, however, could be nothing like the mechanical time machine described by H. Wells. It is difficult to imagine how a human being could move through a wormhole, since it would theoretically be narrower than an atom and it would tend to disappear the instant it formed. ДОПОЛНИТЕЛЬНЫЕ ЗАДАНИЯ Упражнение 1. А. Прочитайте словосочетания из текста 12А и постарайтесь понять значения выделенных слов. 1. life expectancy 4. life-support module 2. risky process 5. the next great adventure 3. key module 6. merely В. Подберите к каждому выделенному в А слову соответствующее ему по значению. a. essential to d. expected period during which b. activity full of risk, danger smth. is active and useful с full of risk f* equipment providing an envi- ronment astronauts may live in. Упражнение 2. Найдите в тексте 12А: A. Прилагательные с суффиксами -я/, -ous и -ive, соответствующие 1. between different countries 2. connected with one person or part of smth. 3. connected with one country 4. that supplies reliable information 5. of technology 6. of the state, government and politics 7. coming earlier in time 8. important because of possible danger 9. full of strong desire to be or to do smth. 10. broad, extending in various or all directions 11. high priced B. Словосочетания с этими прилагательными и приведите свои примеры. Упражнение 3. А. Прочитайте текст и найдите слова, означающие: height, propelling force, wished, be greater than, pressing, what remains, force directed forward, remain in space at one place, spending or using, thrust without losses, braking, small (not serious or important). Solar Sails If we are going to open the solar system to rapid economic travel, we need to find advanced space propulsion systems. Solar sails may be among the keys to future interplanetary flights. Solar sail propulsion uses large, lightweight reflectors attached to spacecraft that react to the light pressure from solar photons to obtain thrust. By tilting (наклонять) the sail to change the force direction, the light pressure can be used to increase the orbital speed of the spacecraft, sending it outward from the Sun, or decrease its orbital speed, allowing it to fall inward. A new type of solar sail, called a solar photon thruster, has a large sail that always faces the Sun for maximum light collection. The collector sail has a slight curvature (кривизна) that focuses the sunlight down onto a much smaller sail, which redirects the sunlight to provide the net thrust vector desired. Besides being more efficient than a standard sail, a solar photon thruster can be launched at Shuttle altitudes. Standard sails can only operate above 1,000 km where the light pressure exceeds the atmospheric drag. Were a solar sail made light enough, it could «hover» without orbiting, the light pressure from the solar photons balancing the gravity attraction of the Sun and/or Earth. Then it would be possible to use solar sails first for communication, broadcast, and weather satellites, second for scientific stations hovering over the Sun and the rest of the solar system, and third for transporting cargo to and from Earth, the planets, and asteroid belt — without an expenditure of fuel.
Дата добавления: 2014-12-17; Просмотров: 982; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |