КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общие сведения. Исследование зависимостей «состав-структура-свойства» для полимерных материалов
Лабораторная работа № 3 Исследование зависимостей «состав-структура-свойства» для полимерных материалов
Цель работы: пластмассы, виды, классификация, исследование некоторых физико-механических свойств пластмасс, приобретение практических навыков определения их твердости, прочности, ударной вязкости. Сравнение свойств металлов и пластмасс. Материалы и оборудование: коллекция пластмассовых деталей и образцов; металлографический комплекс, включающий оптический микроскоп МИ–1, цифровую камеру Nikon Colorpix-4300 с фотоадаптером. Задание. 1. Выполнить лабораторные испытания и определить физико-механические свойства полиэтилена (ПЭВД и ПЭНД) с разной степенью кристалличности, или оргстекла, винипласта, фторопласта, текстолита. 2. Сделать выводы и написать отчет по работе в соответствии с заданиями.
Пластические массы (пластики, пластмассы) – важные конструкционные материалы, широко применяемые в машиностроении, электро- и радиотехнике, строительстве и других отраслях народного хозяйства. Незначительная трудоемкость изготовления пластмассовых деталей (по сравнению с металлическими), их малая себестоимость, технологичность (легко формуются, склеиваются, свариваются, обрабатываются резанием), специфические физико-механические свойства обусловливают эффективность применения и зачастую незаменимость пластмасс в машиностроении. Основными достоинствами пластмасс являются: малая плотность и возможность ее изменения, хорошие тепло-, электро- и звукоизоляционные характеристики, высокая химическая стойкость в ряде сред и неподверженность коррозии, высокие оптические свойства (бесцветность и прозрачность органических стекол), хорошие фрикционные и антифрикционные свойства, достаточно высокая прочность (прочность некоторых пластиков сопоставима с прочностью стали), хорошие декоративные свойства, бесшумность в работе (применительно к зубчатым передачам) и некоторые другие. Недостатки пластмасс – невысокая теплостойкость, низкие ударная вязкость и модуль упругости, склонность некоторых пластмасс к старению. Пластмассы – это материалы на основе природных, а чаще всего искусственных (синтетических) полимеров, которые под действием нагревания и давления способны формоваться в изделия заданной формы и затем устойчиво сохранять ее. Кроме основного компонента – связующего вещества, в состав пластмасс могут входить наполнители, пластификаторы, отвердители, красители, стабилизаторы, порообразователи, ингибиторы и некоторые другие добавки. Соотношение названных компонентов в пластмассах может быть, например, таким (массовая доля): связующее вещество – 30–60%, наполнители – 40–65, пластификаторы – около 1, красители – 1–1,5 смазывающие вещества – 1–2%. Связующие вещества, от которых в наибольшей степени зависят свойства пластмасс – это природные или синтетические полимеры. Под полимерами понимают высокомолекулярные вещества, молекулы которых (макромолекулы) состоят из многочисленных элементарных звеньев (мономеров). Молекулярная масса их может составлять от 5000 до 1 000 000. Природные полимеры – белки и нуклеиновые кислоты, из которых построены клетки живых организмов, природные смолы (янтарь, копал, шеллак), натуральный каучук, целлюлоза, слюда, асбест, природный графит и др. Синтетические полимеры – это полиэтилен, полипропилен, полистирол, поливинилхлорид, полиамиды, поликарбонаты, фторопласты, фенопласты, полиметилметакрилат, фенолоформальдегидные смолы, эпоксидные смолы и др. В отдельных случаях пластмасса, например полиэтилен, может целиком состоять из связующего вещества – полимера. Полимеры, преимущественно синтетические, получаемые химическим синтезом простых органических веществ (мономеров) в макромолекулы методами полимеризации или поликонденсации, являются основой не только пластмасс, но и резины, химических волокон, лаков, красок, клеев и т. д. Так, полиэтилен синтезируют путем полимеризации газа – этилена, получаемого из природного газа или нефтепродуктов. Макромолекулы полимера представляют собой цепочки из звеньев мономера, атомы в которых связаны прочной химической (ковалентной) связью. Различие структур макромолекул (линейные, разветвленные, сетчатые – рис. 3.1) обусловливает неодинаковость свойств полимеров. Так, линейные (полиэтилены, полиамиды и др.) и разветвленные (полиизобутилем и др.) полимеры характеризуются способностью образовывать анизотропные волокна и пленки и находиться в высокоэластичном состоянии; редкосетчатые полимеры (резины) обладают упругостью, густосетчатые (смолы) – хрупкие. По фазовому состоянию полимеры могут быть аморфными или кристаллическими. В большинстве случаев реальные полимеры содержат аморфную и кристаллическую фазы. Содержание в полимере (в процентах) веществ в кристаллическом состоянии называют степенью кристалличности. На рис. 3.2 приведены примеры расположения макромолекул в линейных полимерах. Кристаллическую структуру имеют полимеры с макромолекулами строго регулярной линейной или редкосетчатой формы. Кристаллические полимеры имеют более высокие теплостойкость и механические свойства. По полярности различают неполярные (например, полиэтилен, полипропилен, фторопласт-4) и полярные (например, поливинилхлорид) полимеры. Неполярные полимеры в отличие от полярных обладают более высокими морозостойкостью и диэлектрическими свойствами.
а б в Рис. 3.1. Форма строения макромолекул полимеров: а – линейная; б – разветвленная; в – сетчатая (схемы)
а б в Рис. 3.2. Состояние макромолекул линейных полимеров: а – аморфное беспорядочное; б – аморфное ориентированное; в – кристаллическое (схемы) В зависимости от поведения при нагреве различают термопластичные (термопласты) и термореактивные (реактопласты) полимеры. Соответственно называют и пластмассы на основе этих связующих веществ. Термопластичными называют полимеры или пластмассы, которые с повышением температуры размягчаются, плавятся, при формовании не претерпевают никаких химических изменений, по мере охлаждения затвердевают и сохраняют способность пластически деформироваться при повторном нагреве. Такие полимеры (полиэтилен, полистирол, капрон и др.) имеют линейную или разветвленную структуру макромолекул. Термореактивные полимеры и пластмассы при нагреве и формовании претерпевают существенные химические изменения, затвердевают и, теряя способность пластически деформироваться, остаются твердыми. Линейная структура таких полимеров при нагреве преобразуется в пространственную. Физико-механические свойства полимеров зависят как от их структуры, температуры, так и от физического состояния. Из-за высокой молекулярной массы полимеры не способны образовывать низковязкие жидкости или переходить в газообразное состояние, они могут находиться в одном из трех физических состояний – стеклообразном, высокоэластическом и вязкотекучем. Полимеры в стеклообразном состоянии характеризуются пространственной структурой макромолекул, отличаются твердостью и аморфностью. Атомы находятся в равновесном положении, и макромолекулы не перемещаются. Высокоэластическое состояние макромолекул характерно для высокополимеров и выражается в их способности к большим обратимым изменениям формы при небольших нагрузках. Атомы колеблются, а макромолекулы способны изгибаться. Макромолекулы в целом не перемещаются, но их отдельные сегменты подвижны за счет вращения групп атомов вокруг связи: в мономерных звеньях цепи. Полимеры в вязкотекучем состоянии (линейные или разветвленные) отличаются от жидких веществ большей вязкостью. При этом подвижной является вся макромолекула. На рис. 3.3 приведены зависимости степени деформации полимеров с различной структурой от температуры их нагрева (термомеханические кривые).
Рис. 3.3. Термомеханические кривые для полимеров: а – аморфного; б – кристаллического; в –редкосетчатого для различных состояний: I – стеклообразного; II – высокоэластичного; III – вязкотекучего; IV – химического разложения
По этим кривым можно судить о характере изменения механических и технологических свойств полимеров при различных температурах. Так, полимеры или пластмассы на их основе эксплуатируются при температурах ниже температуры стеклования t c, когда они находятся в твердом состоянии. Формование изделий из полимеров или пластмасс ведут в области их вязкотекучего состояния. Температура t хр (ниже t c ) соответствует переходу полимеров в хрупкое состояние (для полистирола t с=100°С и t хр = 90°С, для полиметил-метакрилата t с = 100оС и t хр = 10°С). В кристаллизующихся полимерах при температуре t ких кристаллическая часть плавится и далее, от t кдо t т, полимер находится в высокоэластичном состоянии. Свыше температур t т аморфные кристаллизующиеся полимеры переходят в вязкотекучее состояние. Для редкосетчатых полимеров температура t x – начало химического разложения полимера. Зависимость степени деформации кристаллических полимеров (полиэтилен, полиамиды, полиэтилентерефталат и др.) от напряжения выражается линией, состоящей из трех участков (рис. 3.4). Первоначально (участок /) удлинение прямо пропорционально усилию. По достижении некоторого усилия (точка А) удлинение полимера увеличивается при неизменном усилии (участок //). Это вызвано резким местным сужением образца, образованием «шейки», распространяющейся на всю его длину. Затем наблюдается растяжение тонкого, но ориентированного образца вплоть до разрыва (участок ///). Деформация полимера зависит также от скорости и температуры нагружения. На рис. 3.5 приведены диаграммы растяжения термопластов – вязких аморфных и кристаллических, хрупких с ориентированными молекулами. Недостаток полимеров, а, следовательно, и пластмасс, – склонность к старению, т. е. самопроизвольному необратимому изменению важнейших характеристик при эксплуатации и хранении.
Рис. 3.4. Зависимость удлинения от усилия при деформации кристаллического полимера а б Рис. 3.5. Диаграммы растяжения пластмасс: а – вязкие аморфные и кристаллические термопласты; б – хрупкие термопласты; термопласты с молекулами, ориентированными вдоль направления растяжения, и реактопласты; заштрихованная область – допустимые нагрузки и удлинения
Важным компонентом пластмасс являются наполнители. Они повышают механическую прочность пластмасс, уменьшают их усадку при формовании изделий, влияют на вязкость, водостойкость пластмасс, придают им специальные свойства, (фрикционные, антифрикционные и др.). Наполнители могут быть органическими или минеральными в виде порошков, волокон, листов (сажа, древесная мука, сульфидная целлюлоза, асбест, тальк, очесы хлопка или льна, стекловолокно, бумага, ткани, древесный шпон и др.). Органические наполнители повышают прочность, снижают хрупкость, но ухудшают термо- и водостойкость пластмасс. Минеральные наполнители повышают прочность, водостойкость, химическую стойкость, тепло- и электроизоляционные свойства пластмасс, но часто повышают и их хрупкость и плотность. В зависимости от вида наполнителя различают: – порошковые (карболиты), – волокнистые (волокниты), – слоистые (содержащие листовые наполнители) и некоторые другие пластмассы. Пластификаторы способствуют повышению пластичности пластмасс или расширению температурного интервала их вязкотекучего состояния. В качестве пластификаторов широко используют органические вещества с высокой температурой кипения и низкой температурой замерзания (стеарин, дибутилфталат, олеиновую кислоту и др.). Отвердители (различные амины), или катализаторы (перекисные соединения) вводят в термореактивные пластмассы для ускорения процессов отверждения пластмасс. Красители органического или минерального происхождения придают пластмассам желаемый цвет. Стабилизаторы, например сажа, препятствуют старению полимерных материалов. Порообразователи, переходя при формовании в газообразное состояние, способствуют образованию пор в таких пластмассах, как пенополистирол, пенополивинил-хлорид, поролон, пенополиуретан и др. Смазывающие вещества вводят для уменыпепия при-липаемости пластмассовых изделий к металлическим частям пресс-формы. Кроме названных, в пластмассы вводятся с различными целями и другие добавки.
Дата добавления: 2014-11-29; Просмотров: 552; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |