КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Способы передачи наследственной информации у бактерий
В 1928 г. Ф. Гриффите получил интересные данные по заражению мышей возбудителем пневмонии. Он использовал два штамма пневмококка: вирулентный штамм S (клетки его имеют полисахаридную капсулу и дают гладкие колонии) и невирулентный штамм R (клетки не обладают капсулой и образуют шероховатые колонии). Заражение мышей вирулентным штаммом вызывало их гибель. При инъекции невирулентного штамма мыши не болели. Пневмония у них не развивалась и после введения вирулентного штамма, убитого нагреванием. Однако, если мышам вводился одновременно убитый штамм S и живой штамм R, через некоторое время они погибали от пневмонии, а при посеве крови были выделены живые пневмококки с капсулой. Таким образом, можно было предполагать, что свойства убитого вирулентного штамма как бы перешли к живому невирулентному. Это явление было названо трансформацией. Природу этого явления в 1944 г. установил О. Эвери. Он провел аналогичный эксперимент с пневмококками in vitro. Спонтанно штамм S мог мутировать, т. е. приобретать свойства штамма R, но обратная мутация (R →S), как правило, не происходит. Однако добавление к R экстракта убитых пневмококков S увеличивает вероятность обратной мутации. Эвери выделил вещество из убитых бактерий вирулентного штамма S, очистил, изучил химические свойства и назвал его трансформирующим фактором. Трансформирующий фактор инактивировался лишь одним ферментом — дезоксирибонуклеазой, расщепляющим только ДНК. Это означало, что трансформирующим веществом является ДНК. Так было получено первое подлинное доказательство генетической роли нуклеиновых кислот. Однако это открытие не сразу привлекло всеобщее внимание, поскольку в то время было мало известно о химической природе генов, структуре белков и ДНК. Тем не менее открытие Эвери стимулировало более детальное изучение нуклеиновых кислот. В 1947 г. Э. Чаргафф установил, что количество нуклеотидов ДНК и их соотношение у разных организмов неодинаково. Это навело на мысль, что порядок расположения нуклеотидов в молекуле ДНК, очевидно, как-то связан с ее генетической специфичностью. Трансформация сводится к включению вещества хромосомы одной бактерии (донора) в хромосому другой (реципиента) и служит одним из способов обмена генетической информацией у бактерий. Однако механизм ее еще недостаточно изучен. Долгое время считалось, что генетическая трансформация свойственна только одноклеточным. В настоящее время установлено, что явления, напоминающие генетическую трансформацию, могут происходить и в клетках эукариотов. При взаимодействии некоторых вирусов с клетками животных возможна трансформация эукариотной клетки. Полученная ею новая генетическая информация устойчиво передается при последующих клеточных делениях. Получены неоспоримые доказательства существования генетической трансформации в клетках млекопитающих. Дж. Берг и В. Мак-Брайд при культивировании клеток мыши в среде с изолированными хромосомами клеток человека выделили потомство клеток с маркерами последнего. (Имеются основания считать, что в геном реципиента включается лишь небольшой участок хромосомы донора, около 2 %.) Пока мало известно о характере связи между геномом реципиента и фрагментом хромосомы донора, но, несомненно, связь эта довольно прочная — клетки мыши не теряли приобретенные свойства даже при выращивании в неселективных условиях. В 1952 г. Н. Циндер и Дж. Ледерберг описали еще один способ передачи наследственной информации у бактерий. Исследования проводились на бактериях мышиного тифа Salmonella fyphimurium. В U-образную трубку с бактериальным фильтром посередине засевались на полную питательную среду 2 штамма: в одну часть пробирки штамм 22А (ауксотрофный по мутации, тормозящей синтез триптофана Т-; это требовало добавления данной аминокислоты в среду для культивирования), в другую — штамм 2А дикого типа (способен синтезировать триптофан Т+). Совместное выращивание двух штаммов бактерий мышиного тифа привело к тому, что через некоторое время при посеве на минимальную среду бактерии штамма 22А дали небольшое количество колоний. Следовательно, они каким-то образом приобрели способность синтезировать триптофан. Переход бактерий из одного колена пробирки в другое преграждался бактериальным фильтром, а возможность обратной мутации штамма 22А исключалась, так как он был стабильным в этом отношении. По мнению Циндера и Ледерберга, перенос информации осуществлялся фагом. Было установлено, что ДНК-содержащие вирусы (фаги) делятся на две группы: паразиты, приводящие к гибели бактериальные клетки, и умеренные (симбиотические), не вызывающие заболевания и разрушения клеток.Умеренные вирусы, или профаги, существуют в клетке в виде ДНК, интегрированной с ДНК бактерии, и реплицируются вместе с ее хромосомой. Явление такого сосуществования умеренного фага и бактерии носит название лизогении. Лизогенная клетка (иначе клетка с профагом) обычно ничем не отличается от других бактерий. Обнаружить профаг удается лишь при активизации его ионизирующим и ультрафиолетовым излучением или при воздействии каких-либо иных факторов, вследствие чего он превращается в зрелый фаг, убивает клетку и использует ДНК бактерии на построение своей ДНК. Таким образом, профаг при заражении новой клетки может сообщить ей часть наследственной информации от старой. Штамм 2А оказался лизогенным по фагу, который из умеренного в силу каких-то причин превратился в паразитический и при заражении новых бактерий перенес в них часть фрагмента ДНК с геном, контролирующим синтез триптофана. Бактериальный фильтр не послужил преградой для вирусов, так как размеры их очень малы и они могут фильтроваться. Явление переноса наследственной информации бактериофагом от одних бактерий к другим называется трансдукцией. Механизм трансдукции еще недостаточно изучен. Предполагается, что фрагмент чужеродной ДНК вначале самостоятельно реплицируется, а затем путем рекомбинации включается в хромосому клетки-реципиента. Трансдукция в настоящее время детально изучается в связи с вопросами генной инженерии, поскольку может рассматриваться в качестве одного из путей переноса наследственной информации от клетки к клетке. В 1946 г. Дж. Ледерберг и Е. Татум при совместном выращивании двух ауксотрофных комплементарных мутантов кишечной палочки Е. coli (В-М-Р+Т+ и В+М+Р-Т-) в течение ночи получили культуру В+М+Р+Т+, которая оказалась способной в отличие от исходных штаммов расти на минимальной питательной среде без добавления метионина, биотина, треонина и пролина. Трансформации и трансдукции здесь явно не было. При наличии бактериального фильтра в сосудах, где выращивались культуры, взаимного обмена информацией не наблюдалось. Очевидно, существует очень тесный контакт между бактериями. На основании этого впервые было высказано предположение о возможности у бактерий полового процесса. Половой процесс у бактерий, при котором осуществляется перенос генетической информации при тесном контакте клеток, был назван конъюгацией. Впоследствии удалось получить микрофотографии конъюгирующих бактерий кишечной палочки. Передача информации при конъюгации носит односторонний характер.В 1952 г. Б. Хейс показал, что при конъюгации одна из клеток (мужская F+) служит донором, другая (женская F-) — реципиентом. Донорные клетки несут особый фактор F (фрагмент молекулы ДНК; автономно существует в цитоплазме и содержит около 10 пар нуклеотидов), являющийся нехромосомной структурой. Реципиенты этого фактора не имеют. Процесс конъюгации и механизм переноса генетического материала был описан у бактерий Е. coli в 1955 г. В. Вольманом и Ф. Жакобом. Они показали, что при конъюгации фактор F может переходить из мужской клетки в женскую и превращать ее в F+. При этом другие свойства бактериальной клетки не изменяются. Передача полового фактора происходит как бы независимо от других генетических маркеров. Клетки штаммов F- внутри себя не рекомбинируют. При обратной мутации половой фактор у бактерий может вновь приобрести автономное состояние. Освобожденный из хромосомы, подобно профагу, он иногда захватывает фрагмент бактериальной хромосомы, прилегающий к нему, и при конъюгации вместе с ним переходит в женскую клетку, сообщая ей свойства донорной клетки и некоторые другие свойства, контролируемые фрагментом хромосомы. Такой процесс переноса наследственной информации из одной бактериальной клетки в другую посредством полового фактора называется сексдукцией. Таким образом, половой фактор является саморедуплицирующим генетическим элементом, способным существовать в двух состояниях: автономном и интегрированном в хромосому. Такие участки генетического материала получили название эписом.
Дата добавления: 2014-11-29; Просмотров: 1467; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |