Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод деления отрезка пополам является самым простым и надежным способом решения нелинейного уравнения




Метод деления отрезка пополам (метод дихотомии, метод бисекции)

Основные этапы отыскания решения

Большинство методов решения уравнения (2.1) ориентировано на отыскание простых корней уравнения (2.1).

Постановка задачи

ЛЕКЦИЯ 2

Тема: Решение нелинейных уравнений

Пусть дана некоторая функция f(x) и требуется найти все или некоторые значения x, для которых

f(x) = 0. (2.1)

Значение x*, при котором f(x*) = 0, называется корнем (или решением) уравнения (2.1).

Относительно функции f(x) часто предполагается, что f(x) дважды непрерывно дифференцируема в окрестности корня.

Корень x* уравнения (2.1) называется простым, если первая производная функции f(x) в точке x* не равна нулю, т. е. f (x*) 0. Если же f (x*) = 0, то корень x* называется кратным корнем.

Геометрически корень уравнения (2.1) есть точка пересечения графика функции y = f(x) с осью абсцисс. На рис. 2.1 изображен график функции y = f(x), имеющей четыре корня: два простых (xи x) и два кратных (xи x).

Рис. 2.1.

В процессе приближенного отыскания корней уравнения (2.1) обычно выделяют два этапа: локализация (или отделение) корня и уточнение корня.

Локализация корня заключается в определении отрезка [a, b], содержащего один и только один корень. Не существует универсального алгоритма локализации корня. В некоторых случаях отрезок локализации может быть найден из физических соображений. Иногда удобно бывает локализовать корень с помощью построения графика или таблицы значений функции y = f(x). На наличие корня на отрезке [a, b] указывает различие знаков функции на концах отрезка. Основанием для этого служит следующая теорема математического анализа.

Теорема 2.1. Если функция f непрерывна на отрезке [a, b] и принимает на его концах значения разных знаков, так, что f(a)f(b) < 0, то отрезок [a, b] содержит по крайней мере один корень уравнения f(x) = 0.

Однако, корень четной кратности таким образом локализовать нельзя, так как в окрестности такого корня функция f(x) имеет постоянный знак.

На этапе уточнения корня вычисляют приближенное значение корня с заданной точностью > 0. Приближенное значение корня уточняют с помощью различных итерационных методов. Суть этих методов состоит в последовательном вычислении значений x0, x1, …, xn, …, которые являются приближениями к корню x*.

Пусть из предварительного анализа известно, что корень уравнения (2.1) находится на отрезке [a0, b0], т. е. x*[a0, b0], так, что f(x*) = 0.

Пусть функция f(x) непрерывна на отрезке [a0, b0] и принимает на концах отрезка значения разных знаков, т.е.

f(a0)f(b0) < 0. (2.2)

Разделим отрезок [a0, b0] пополам. Получим точку x0 =. Вычислим значение функции в этой точке: f(x0). Если f(x0) = 0, то x0 - искомый корень, и задача решена. Если f(x0)0, то f(x0) - число определенного знака: f(x0) > 0, либо f(x0) < 0. Тогда либо на концах отрезка [a0, x0], либо на концах отрезка [x0, b0] значения функции f(x) имеют разные знаки. Обозначим такой отрезок [a1, b1]. Очевидно, что x*[a1, b1], и длина отрезка [a1, b1] в два раза меньше, чем длина отрезка [a0, b0]. Поступим аналогично с отрезком [a1, b1]. В результате получим либо корень x*, либо новый отрезок [a2, b2], и т.д. (рис. 2.2).

Рис. 2.2

Середина n-го отрезка xn =. Очевидно, что длина отрезка [an, bn] будет равна, а т. к. x*[an, bn], то

| xn - x*|. (2.3)

Погрешность метода. Оценка (2.3) характеризует погрешность метода деления отрезка пополам и указывает на скорость сходимости: метод сходится со скоростью геометрической прогрессии, знаменатель которой q = 1/2. Заметим, что оценка (2.3) является априорной.

Критерий окончания. Из соотношения (2.3) следует, что при заданной точности приближения вычисления заканчиваются, когда будет выполнено неравенство bn - an < 2 или неравенство n > log2((b0 - a0)/) - 1. Таким образом, количество итераций можно определить заранее. За приближенное значение корня берется величина xn.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1503; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.