Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Архитектура программного обеспечения




Анализ области решений

Допустим, мы разобрались в предметной области, поняли, что требуется от будущей программной системы, даже зафиксировали настолько полно, насколько смогли, требования и пожелания всех заинтересованных лиц ко всем аспектам качества программы. Что делать дальше?

На этом этапе (а точнее, гораздо раньше, обычно еще в ходе анализа предметной области) исследуются возможные способы решения тех задач, которые поставлены в требованиях. Не всегда бывает нужно специальное изучение этого вопроса — чаще всего имеющийся опыт разработчиков сразу подсказывает, как можно решать поставленные задачи. Однако иногда, все-таки, возникает потребность сначала понять, как это можно сделать и, вообще, возможно ли это сделать и при каких ограничениях.

Таким образом, явно или неявно, проводится анализ области решений. Целью этой деятельности является понимание, можно ли вообще решить стоящие перед разрабатываемой системой задачи, при каких условиях и ограничениях это можно сделать, как они решаются, если решение есть, а если нет — нельзя ли придумать способ его найти или получить хотя бы приблизительное решение,

________________________________________________________________________________________________________________________________________

и т.п. Обычно задача хорошо исследована в рамках какой-либо области человеческих знаний, но иногда приходится потратить некоторые усилия на выработку собственных решений. Кроме того, решений обычно несколько и они различаются по некоторым характеристикам, способным впоследствии сыграть важную роль в процессе развития и эксплуатации созданной на их основе программы. Поэтому важно взвесить их плюсы и минусы и определить, какие из них наиболее подходят в рамках данного проекта, или решить, что все они должны использоваться для обеспечения большей гибкости ПО.

Когда определены принципиальные способы решения всех поставленных задач (быть может, в каких-то ограничениях), основной проблемой становится способ организации программной системы, который позволил бы реализовать все эти решения и при этом удовлетворить требованиям, касающимся нефункциональных аспектов разрабатываемой программы. Искомый способ организации ПО в виде системы взаимодействующих компонентов называют архитектурой, а процесс ее создания — проектированием архитектуры ПО.

Под архитектурой ПО понимают набор внутренних структур ПО, которые видны с различных точек зрения и состоят из компонентов, их связей и возможных взаимодействий между компонентами, а также доступных извне свойств этих компонентов [1].

Под компонентом в этом определении имеется в виду достаточно произвольный структурный элемент ПО, который можно выделить, определив интерфейс взаимодействия между этим компонентом и всем, что его окружает. Обычно при разработке ПО термин "компонент" (см. далее при обсуждении компонентных технологий) имеет несколько другой, более узкий смысл — это единица развертывания, самая маленькая часть системы, которую можно включить или не включить в ее состав. Такой компонент также имеет определенный интерфейс и удовлетворяет некоторому набору правил, называемому компонентной моделью. Там, где возможны недоразумения, будет указано, в каком смысле употребляется этот термин. В этой лекции до обсуждения UML мы будем использовать преимущественно широкое понимание этого термина, а в дальше — наоборот, узкое.

В определении архитектуры упоминается набор структур, а не одна структура. Это означает, что в качестве различных аспектов архитектуры, различных взглядов на нее выделяются различные структуры, соответствующие разным аспектам взаимодействия компонентов. Примеры таких аспектов — описание типов компонентов и типов статических связей между ними при помощи диаграмм классов, описание композиции компонентов при помощи структур ссылающихся друг на друга объектов, описание поведения компонентов при помощи моделирования их как набора взаимодействующих, передающих друг другу некоторые события, конечных автоматов.

Архитектура программной системы похожа на набор карт некоторой территории. Карты имеют разные масштабы, на них показаны разные элементы (административно-политическое деление, рельеф и тип местности — лес, степь, пустыня, болота и пр., экономическая деятельность и связи), но они объединяются тем, что все представленные на них сведения соотносятся с географическим положением. Точно так же архитектура ПО представляет собой набор структур или представлений, имеющих различные уровни абстракции и показывающих разные аспекты (структуру классов ПО, структуру развертывания, т.е. привязки компонентов ПО к физическим машинам, возможные сценарии взаимодействий компонентов и пр.), объединяемых сопоставлением всех представленных данных со структурными элементами ПО. При этом уровень абстракции данного представления является аналогом масштаба географической карты.

 

Рассмотрим в качестве примера программное обеспечение авиасимулятора для командной тренировки пилотов. Задачей такой системы в целом является контроль и выработка необходимых для безопасного управления самолетом навыков у команд летчиков. Кроме того, отрабатываются навыки поведения в особых ситуациях, связанных с авариями, частичной потерей управления самолетом, тяжелыми условиями полета, и т.д.

Симулятор должен:

  • Моделировать определенные условия полета и создавать некоторые события, к которым относятся следующие:
    • Скоростной и высотный режим полета, запас горючего, их изменения со временем.
    • Модель самолета и ее характеристики по управляемости, возможным режимам полета и скорости реакции на различные команды.
    • Погода за бортом и ее изменения со временем.
    • Рельеф и другие особенности местности в текущий момент, их изменения со временем.
    • Исходный и конечный пункты полета, расстояние и основные характеристики рельефа между ними.
    • Исправность или неисправность элементов системы контроля полета и управления самолетом, показатели системы мониторинга и их изменение со временем.
    • Наличие пролетающих вблизи курса самолета других самолетов, их геометрические и скоростные характеристики.
    • Чрезвычайные ситуации, например, террористы на борту, нарушение герметичности корпуса, внезапные заболевания и "смерть" отдельных членов экипажа.

При этом вся совокупность условий должна быть непротиворечивой, выглядеть и развиваться подобно реальным событиям. Некоторые условия, например, погода, должны изменяться достаточно медленно, другие события — происходить внезапно и приводить к связанным с ними последствиям (нарушение герметичности корпуса может сопровождаться поломками каких-то элементов системы мониторинга или "смертью" одного из пилотов). Если приборы показывают наличие грозы по курсу и они исправны, через некоторое время летчики должны увидеть грозу за бортом и она может начать оказывать влияние на условия полета.

  • Принимать команды, подаваемые пилотами, и корректировать демонстрируемые характеристики полета и работы системы управления самолетом в зависимости от этих команд, симулируемой модели самолета и исправности системы управления. Например, при повороте на некоторый угол вправо, показываемый пилотам "вид из кабины" должен переместиться на соответствующий угол влево со скоростью, соответствующей скорости реакции симулируемой модели самолета и исправности задействованных элементов системы управления.

Понятно, что одним из элементов симулятора служит система визуализации обстановки за бортом — она показывает пилотам "вид за окнами". Пилоты в ходе полета ориентируются по показателям огромного количества датчиков, представленных на приборной панели самолета. Вся их работа тоже должна симулироваться. Наличие и характеристики работы таких датчиков могут зависеть от симулируемой модели, но их расположение, форма и цвет служат слишком важными элементами выработки навыков управления самолетом, поэтому требуется поддерживать эти характеристики близкими к реальным. Представлять их только в виде изображений на некоторой панели неудобно, поскольку они должны располагаться и выглядеть максимально похоже на реальные прототипы. Значит, симулировать можно только небольшое семейство самолетов с практически одним и тем же набором приборов на приборной панели.

 

 

Кроме того, все команды пилотов должны восприниматься соответствующими компонентами симулятора и встраиваться в моделируемые условия. В симулятор должен быть включен генератор событий, зависящий от текущей ситуации, а также интерфейс мониторинга и управления, с помощью которого внешний оператор мог бы создавать определенные события во время симуляции полета наблюдать за всем, что происходит. Все события и действия пилотов должны протоколироваться с помощью камер и микрофонов для дальнейшего разбора полетов.


увеличить изображение
Рис. 6.1. Примерная архитектура авиасимулятора

Рис. 6.1 показывает набросок архитектуры такого авиасимулятора. Каждый из указанных компонентов решает свои задачи, которые необходимы для работы всей системы. В совокупности они решают все задачи системы в целом. Стрелками показаны потоки данных и управления между компонентами. Пунктирные стрелки изображают потоки данных, передаваемых для протоколирования.

Архитектура определяет большинство характеристик качества ПО в целом. Архитектура служит также основным средством общения между разработчиками, а также между разработчиками и всеми остальными лицами, заинтересованными в данном ПО.

Выбор архитектуры задает способ реализации требований на высоком уровне абстракции. Именно архитектура почти полностью определяет такие характеристики ПО как надежность, переносимость и удобство сопровождения. Она также значительно влияет на удобство использования и эффективность ПО, которые, однако, сильно зависят и от реализации отдельных компонентов. Значительно меньше влияние архитектуры на функциональность — обычно заданную функциональность можно реализовать, использовав совершенно различные архитектуры.

Поэтому выбор между той или иной архитектурой определяется в большей степени именно нефункциональными требованиями и необходимыми свойствами ПО с точки зрения удобства сопровождения и переносимости. При этом для построения хорошей архитектуры надо учитывать возможные противоречия между требованиями к различным характеристикам и уметь выбирать компромиссные решения, дающие приемлемые значения по всем показателям.

Так, для повышения эффективности в общем случае выгоднее использовать монолитные архитектуры, в которых выделено небольшое число компонентов (в пределе — единственный компонент). Этим обеспечивается экономия как памяти, поскольку каждый компонент обычно имеет свои данные, а здесь число компонентов минимально, так и времени работы, поскольку возможность оптимизировать работу алгоритмов обработки данных имеется также только в рамках одного компонента.

С другой стороны, для повышения удобства сопровождения, наоборот, лучше разбить систему на большое число отдельных маленьких компонентов, с тем чтобы каждый из них решал свою небольшую, но четко определенную часть общей задачи. При этом, если возникают изменения в требованиях или проекте, их обычно можно свести к изменению в постановке одной, реже двух или трех таких подзадач и, соответственно, изменять только отвечающие за решение этих подзадач компоненты.

С третьей стороны, для повышения надежности лучше использовать либо небольшой набор простых компонентов, либо дублирование функций, т.е. сделать несколько компонентов ответственными за решение одной подзадачи. Заметим, однако, что ошибки в ПО чаще всего носят неслучайный характер. Они повторяемы, в отличие от аппаратного обеспечения, где ошибки связаны часто со случайными изменениями характеристик среды и могут быть преодолены простым дублированием компонентов без изменения их внутренней реализации. Поэтому при таком обеспечении надежности надо использовать достаточно сильно отличающиеся способы решения одной и той же задачи в разных компонентах.

Другим примером противоречивых требований служат характеристики удобства использования и защищенности. Чем сильнее защищена система, тем больше проверок, процедур идентификации и пр. нужно проходить пользователям. Соответственно, тем менее удобна для них работа с такой системой. При разработке реальных систем приходится искать некоторый разумный компромисс, чтобы сделать систему достаточно защищенной и способной поставить ощутимую преграду для несанкционированного доступа к ее данным и, в то же время, не отпугнуть пользователей сложностью работы с ней.

Разработка и оценка архитектуры на основе сценариев При проектировании архитектуры системы на основе требований, зафиксированных в виде вариантов использования, первые возможные шаги состоят в следующем.
  1. Выделение компонентов
    • Выбирается набор "основных" сценариев использования — наиболее существенных и выполняемых чаще других.
    • Исходя из опыта проектировщиков, выбранного архитектурного стиля (см. следующую лекцию) и требований к переносимости и удобству сопровождения системы определяются компоненты, отвечающие за определенные действия в рамках этих сценариев, т.е. за решение определенных подзадач.
    • Каждый сценарий использования системы представляется в виде последовательности обмена сообщениями между полученными компонентами.
    • При возникновении дополнительных хорошо выделенных подзадач добавляются новые компоненты, и сценарии уточняются.
  2. Определение интерфейсов компонентов
    • Для каждого компонента в результате выделяется его интерфейс — набор сообщений, которые он принимает от других компонентов и посылает им.
    • Рассматриваются "неосновные" сценарии, которые так же разбиваются на последовательности обмена сообщениями с использованием, по возможности, уже определенных интерфейсов.
    • Если интерфейсы недостаточны, они расширяются.
    • Если интерфейс компонента слишком велик, или компонент отвечает за слишком многое, он разбивается на более мелкие.
  3. Уточнение набора компонентов
    • Там, где это необходимо в силу требований эффективности или удобства сопровождения, несколько компонентов могут быть объединены в один.
    • Там, где это необходимо для удобства сопровождения или надежности, один компонент может быть разделен на несколько.
  4. Достижение нужных свойств.
Все это делается до тех пор, пока не выполнятся следующие условия:
    • Все сценарии использования реализуются в виде последовательностей обмена сообщениями между компонентами в рамках их интерфейсов.
    • Набор компонентов достаточен для обеспечения всей нужной функциональности, удобен для сопровождения или портирования на другие платформы и не вызывает заметных проблем производительности.
    • Каждый компонент имеет небольшой и четко очерченный круг решаемых задач и строго определенный, сбалансированный по размеру интерфейс.
    На основе возможных сценариев использования или модификации системы возможен также анализ характеристик архитектуры и оценка ее пригодности для поставленных задач или сравнительный анализ нескольких архитектур. Это так называемый метод анализа архитектуры ПО (Software Architecture Analysis Method, SAAM) [1,4]. Основные его шаги следующие.
  1. Определить набор сценариев действий пользователей или внешних систем, использующих некоторые возможности, которые могут уже планироваться для реализации в системе или быть новыми. Сценарии должны быть значимы для конкретных заинтересованных лиц, будь то пользователь, разработчик, ответственный за сопровождение, представитель контролирующей организации и пр. Чем полнее набор сценариев, тем выше будет качество анализа. Можно также оценить частоту появления и важность сценариев, возможный ущерб от невозможности их выполнить.
  2. Определить архитектуру (или несколько сравниваемых архитектур). Это должно быть сделано в форме, понятной всем участникам оценки.
  3. Классифицировать сценарии. Для каждого сценария из набора должно быть определено, поддерживается ли он уже данной архитектурой или для его поддержки нужно вносить в нее изменения. Сценарий может поддерживаться, т.е. его выполнение не потребует внесения изменений ни в один из компонентов, или же не поддерживаться, если его выполнение требует изменений в описании поведения одного или нескольких компонентов или изменений в их интерфейсах. Поддержка сценария означает, что лицо, заинтересованное в его выполнении, оценивает степень поддержки как достаточную, а необходимые при этом действия — как достаточно удобные.
  4. Оценить сценарии. Определить, какие из сценариев полностью поддерживаются рассматриваемыми архитектурами. Для каждого неподдерживаемого сценария надо определить необходимые изменения в архитектуре — внесение новых компонентов, изменения в существующих, изменения связей и способов взаимодействия. Если есть возможность, стоит оценить трудоемкость внесения таких изменений.
  5. Выявить взаимодействие сценариев. Определить какие компоненты требуется изменять для неподдерживаемых сценариев; если требуется изменять один компонент для поддержки нескольких сценариев — такие сценарии называют взаимодействующими. Нужно оценить смысловые связи между взаимодействующими сценариями.
Малая связанность по смыслу между взаимодействующими сценариями означает, что компоненты, в которых они взаимодействуют, выполняют слабо связанные между собой задачи и их стоит декомпозировать. Компоненты, в которых взаимодействуют много (более двух) сценариев, также являются возможными проблемными местами.
  1. Оценить архитектуру в целом (или сравнить несколько заданных архитектур). Для этого надо использовать оценки важности сценариев и степень их поддержки архитектурой.
Рассмотрим сравнительный анализ двух архитектур на примере индексатора — программы для построения индекса некоторого текста, т.е. упорядоченного по алфавиту списка его слов без повторений. увеличить изображение Рис. 6.2. Пример работы индексатора текста
  1. Выделим следующие сценарии работы или модификации программы:
    • Надо сделать так, чтобы индексатор мог работать в инкрементальном режиме, читая на входе одну фразу за другой и пополняя получаемый в процессе работы индекс.
    • Надо сделать так, чтобы индексатор мог игнорировать предлоги, союзы, местоимения, междометия, частицы и другие служебные слова.
    • Надо сделать так, чтобы индексатор мог обрабатывать тексты, подаваемые ему на вход в виде архивов.
    • Надо сделать так, чтобы в индексе оставались только слова в основной грамматической форме — существительные в единственном числе и именительном падеже, глаголы в неопределенной форме и пр.
  2. Определим две возможных архитектуры индексатора для сравнительного анализа.
    • В качестве первой архитектуры рассмотрим разбиение индексатора на два компонента. Один компонент принимает на свой вход входной текст, полностью прочитывает его и выдает на выходе список слов, из которых он состоит. Второй компонент принимает на вход список слов, а на выходе выдает его упорядоченный вариант без повторений. Этот вариант архитектуры построен в стиле "каналы и фильтры" (см. следующую лекцию).
увеличить изображение Рис. 6.3. Архитектура индексатора в стиле "каналы и фильтры"
    • Другой вариант архитектуры индексатора устроен следующим образом. Имеется внутренняя структура данных, хранящая подготовленный на настоящий момент вариант индекса. Он представляет собой упорядоченный список без повторений всех слов, прочитанных до настоящего момента. Кроме того, имеются две переменные — строка, хранящая последнее (быть может, не до конца) прочитанное слово, и ссылка на то слово в подготовленном списке, которое лексикографически следует за последним словом (соответственно, предшествующее этому слово в списке лексикографически предшествует последнему прочитанному слову).
    • on_load_lecture()

 

Основные конструкции языков Java и C#




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1447; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.