КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
ЛЕКЦИЯ 9. Тема: Элементы теории погрешностей Определение
Тема: Элементы теории погрешностей Обычно используется запись Определение. Пусть искомая величина u является функцией параметров u* — приближенное значение u. Тогда предельной абсолютной погрешностью называется величина Предельной относительной погрешностью называется величина Пусть — приближенное значение Предполагаем, что u — непрерывно дифференцируемая функция своих аргументов. Тогда, по формуле Лагранжа, где Отсюда где Можно показать, что при малых это оценка не может быть существенно улучшена. На практике иногда пользуются грубой (линейной) оценкой где Несложно показать, что где O (h) есть погрешность метода. В данном случае под погрешностью метода понимается абсолютная величина разности , которая составляет O (h) (более точно , где ). Если же взять другой метод вычисления производной , то получим, что его погрешность составляет O (h 2), это оказывается существенным при малых h. Однако уменьшать h до бесконечности не имеет смысла, что видно из следующего примера. Реальная погрешность при вычислении первой производной будет Выбирать значение h меньше оптимального не имеет смысла, так как при дальнейшем уменьшении шага суммарная погрешность начинает расти из-за возрастания вклада ошибок округления. Рассмотрим задачу приближенного вычисления приближенного значения производной подробнее. Пусть задана таблица значений xi. В дальнейшем совокупность точек на отрезке, котором проводятся вычисления, иногда будут называться сеткой, каждое значение xi — узлом сетки. Пусть сетка равномерная, и расстояние между узлами равно — шагу сетки. Пусть узлы сетки пронумерованы в порядке возрастания, т.е. тогда, если шаг сетки достаточно мал, по аналогии можно написать формулу в конечных разностях, дающую приближенное значение производной сеточной функции: По аналогии напишем конечно-разностную формулу (1.2) (1.2) — формула с центральной разностью. Исследуем ее на аппроксимацию, т.е. оценим погрешность метода. Предположим, что функция, которую спроектировали на сетку, трижды непрерывно дифференцируема, тогда Погрешность метода определяется 3-й производной функции. Введем тогда суммарная погрешность при вычислении по формуле с центральной разностью есть Формула (1.1) — двухточечная, (1.2) — трехточечная: при вычислении производной используются точки (узлы) (узел входит с нулевым коэффициентом), , — совокупность узлов, участвующих в каждом вычислении производной, в дальнейшем будем иногда называть сеточным шаблоном. (1.3) шаблон включает l точек слева от рассматриваемой точки xj и m справа. Коэффициенты α — неопределенные коэффициенты. Формула дифференцирования может быть и односторонней — либо l, либо m могут равняться нулю. В первом случае иногда называют (на наш взгляд, не слишком удачно) такую приближенную формулу формулой дифференцирования вперед, во втором — формулой дифференцирования назад. Потребуем, чтобы (1.3) приближала первую производную с точностью Используем разложения в ряд Тейлора в окрестности точки xj. Подставляя их в (1.3), получим Потребуем выполнение условий: Получаем систему линейных алгебраических уравнений для неопределенных коэффициентов α (1.4). Матрица этой системы есть Вектор правых частей (0, 1, 0, …,0)T. Определитель данной матрицы — детерминант Вандермонда. Из курса линейной алгебры следует, что он не равен нулю. Тогда существует единственный набор коэффициентов α, который позволяет найти на шаблоне из (1 + l + m) точек значение первой производной с точностью Таким образом, доказано следующее утверждение. На сеточном шаблоне, включающем в себя N + 1 точку, с помощью метода неопределенных коэффициентов всегда можно построить единственную формулу для вычисления производной от первого до N порядка включительно с точностью . Таким образом, решение I * устойчиво. Все три условия корректности задачи выполнены.
Дата добавления: 2014-11-29; Просмотров: 437; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |