Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Универсальные и импульсные диоды




Стабилитроны и стабисторы

 

Стабилитроном называется полупроводниковый диод, на об­ратной ветви ВАХ которого имеется участок с сильной зависимо­стью тока от напряжения (рисунок 2.2), т.е. с большим значением крутиз­ны DI/DU (DI= Imax - Iст min). Если такой участок соответствует прямой ветви ВАХ, то прибор называется стабистором.

Стабилитроны используются для соз­дания стабилизаторов напряжения.

Напряжение стабилизации Uст равно напряжению электрического (лавинного) пробоя p-n перехода при некотором заданном токе стабилиза­ции Iст (рисунок). Стабилизирующие свойства ха­рактеризуются дифференциальным со­противлением стабилитрона rд = DU/DI, которое должно быть возможно меньше.

К параметрам стабилитрона относятся: напряжение стабилизации Ucт, минимальный и максимальный токи стабилизации Iст min Iст max.

Промышленностью выпускаются стабилитроны с параметрами: Ucт от 1,5 до 180 В, токи стабилизации от 0,5 мА до 1,4 А.

Выпускаются также двуханодные стабилитроны, служащие для стабилизации разнополярных напряжений и представляющие собой встречно включенные p-n переходы.

 

Рисунок 2.2 К определению параметров стабилитронов.

 

 

Они применяются для преобразования высокочастотных и им­пульсных сигналов. В данных диодах необходимо обеспечить мини­мальные значения реактивных параметров, что достигается благо­даря специальным конструктивно-технологическим мерам.

Одна из основных причин инерционности полупроводниковых диодов связана с диффузионной емкостью. Для уменьшения времени жизни t используется легирование материала (например, золотом), что создает много ловушечных уровней в за­прещенной зоне, увеличивающих скорость рекомбинации и следовательно уменьшается Сдиф.

Разновидностью универсальных диодов является диод с корот­кой базой. В таком диоде протяженность базы меньше диффузион­ной длины неосновных носителей. Следовательно, диффузионная емкость будет определяться не временем жизни неосновных носи­телей в базе, а фактическим меньшим временем нахождения (вре­менем пролета). Однако осуществить уменьшение толщины базы при большой площади p-n перехода технологически очень сложно. Поэтому изготовляемые диоды с короткой базой при малой площа­ди являются маломощными.

В настоящее время широко применяются диоды с p-i-n-структурой, в которой две сильнолегированные области p- и n-типа разде­лены достаточно широкой областью с проводимостью, близкой к собственной (i-область). Заряды донорных и акцепторных ионов расположены вблизи границ i-области. Распределение электричес­кого поля в ней в идеальном случае можно считать однородным (в отличие от обычного p-n перехода). Таким образом, i-область с низ­кой концентрацией носителей заряда, но обладающей диэлектриче­ской проницаемостью можно принять за конденсатор, «обкладками» которого являются узкие (из-за большой концентрации носителей в p- и n-областях) слои зарядов доноров и акцепторов. Барьерная ем­кость p-i-n диода определяется размерами i-слоя и при достаточно широкой области от приложенного постоянного напряжения прак­тически не зависит.

Особенность работы p-i-n диода состоит в том, что при прямом напряжении одновременно происходит инжекция дырок из p-области и электронов из n-области в i-область. При этом его прямое со­противление резко падает. При обратном напряжении происходит экстракция носителей из i-области в соседние области. Уменьшение концентрации приводит к дополнительному возрастанию сопротив­ления i области по сравнению с равновесным состоянием. Поэтому для p-i-n диода характерно очень большое отношение прямого и об­ратного сопротивлений, что при использовании их в переклю­чательных режимах.

В качестве высокочастотных универсальных использу­ются структуры с Шоттки и Мотта. В этих приборах про­цессы прямой проводимости определяются только основными носи­телями заряда. Таким образом, у рассматриваемых диодов отсутст­вует диффузионная емкость, связанная с накоплением и рассасы­ванием носителей заряда в базе, что и определяет их хорошие вы­сокочастотные свойства.

Отличие барьера Мотта от барьера Шоттки состоит в том, что тон­кий i-слой создан между металлом М и сильно легированным полу­проводником n+, так что получается структура М-i-n. В высокоомном i-слое падает все приложенное к диоду напряжение, поэтому толщи­на обедненного слоя в n+-области очень мала и не зависит от напря­жения. И поэтому барьерная емкость практически не зависит от на­пряжения и сопротивления базы.

Наибольшую рабочую частоту имеют диоды с барьером Мотта и Шоттки, которые в отличие от p-n-перехода почти не накаплива­ют неосновных

носителей заряда в базе диода при прохождении прямого тока и поэтому имеют малое время восстановления tВОСТ (около 100 пс).

 

Разновидностью импульсных диодов являются диоды с накоп­лением заряда (ДНЗ) или диоды с резким восстановлением обрат­ного тока (сопротивления). Импульс обратного тока в этих диодах имеет почти прямоугольную форму (рисунок 4.2). При этом значение t1 может быть значительным, но t2 должно быть чрезвычайно малым для использования ДНЗ в быстродействующих импульсных устройствах.

Получение малой длительности t2 связано с созданием внутреннего поля в базе около обедненного слоя p-n-перехода путем неравномерного распре­деления примеси. Это поле является тормозящим для носителей, пришед­ших через обедненный слой при пря­мом напряжении, и поэтому препятст­вует уходу инжектированных носителей от границы обедненного слоя, заставляя их компактнее концентрироваться зи грани­цы. При подаче на диод обратного напряжения (как и в обычном диоде) происходит рассасывание накопленного в базе заряда, но при этом внутреннее электрическое поле уже будет способство­вать дрейфу неосновных носителей к обедненному слою перехо­да. В момент t1, когда концентрация избыточных носителей на границах перехода спадает до нуля, оставшийся избыточный за­ряд неосновных носителей в базе становится очень малым, а, следовательно, оказывается малым и время t2 спадания обратно­го тока до значения I0.

Рисунок 2.3 Временные диаграммы тока через импульсный диод.

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 498; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.