КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
М. Донецк , ул. Артема, 118-б
Задача определения максимального потока. Рассматривается сеть с одним узлом входа (источник) и одним узлом выхода (сток). Какова максимальная величина потока (количество машин, сообщений, жидкости и т.д.), который может войти в сетевую систему и выйти из нее в заданный период времени? При этом предполагаем, что поток, вытекающий из узла, равен потоку, втекающему в узел. Под пропускной способностью (мощностью) дуги будем понимать верхнее ограничение на поток в этой дуге. Мощность потока может зависеть от его направления. Условное изображение в сети Означает, что мощность потока от узла 1 к узлу 2 равна 6, а мощность от 2 к 1 равна 0. Алгоритм определения максимального потока:
Пример. Система автодорог «Север-Юг», проходящих через Псковскую область, может обеспечить пропускные способности, показанные на приводимой ниже схеме (тыс. автомашин в час).
Каков максимальный поток через эту систему (тыс. автомашин в час)? Сколько автомашин должно проехать по дороге 5-6, чтобы обеспечить максимальный поток? Искомую величину максимального потока положим равной нулю. Выбираем путь 1-3-6. Р=min(6,2)=2. Поэтому мощности потоков на пути 1-3-6 в направлении потока уменьшаем на величину Р=2, а мощности потоков в обратном направлении на пути 1-3-6 увеличим на Р=2. Общий поток станет 0+2=2. Получим: Выбираем путь 1-4-6. Р=min(3,3)=3. Все потоки на пути 1-4-6 в направлении общего потока уменьшаем на 3, а в обратном направлении увеличиваем на 3. Общий поток увеличиваем на 3. Итого, 2+3=5. Получим: Выбираем путь 1-2-5-6. Р=min(2,4,6)=2. Все потоки на пути 1-2-5-6 в направлении общего потока уменьшаем на 2, в обратном увеличиваем на 2. Общий поток увеличиваем тоже на 2. Итого 5+2=7. Получим: Выбираем путь 1-3-4-5-6. Р=min(4,3,1,4)=1. Все потоки на пути 1-3-4-5-6 в направлении общего потока (4,3,1,4) уменьшаем на величину Р=1, а все потоки на этом пути в обратном направлении увеличиваем на Р=1. Итого, общий поток 7+1=8. Получим: Выбираем путь 1-3-4-2-5-6. Р=min(3,2,1,2,3)=1. В прямом направлении уменьшаем на 1, в обратном увеличиваем на 1. Общий поток равен 8+1=9. Получим: Больше не существует путей из узла 1 в узел 6 с мощностью, превышающей 0 на всем пути (Р=0). Следовательно, 9 тыс. – это максимальный поток через сеть. Определим теперь величину и направление потока на каждой дуге, чтобы достичь максимального потока в 9 тыс. автомобилей. Поток проходит по дуге с величиной, равной разнице между первоначальной и конечной мощностями потока. Так, первоначальная мощность дуги 1-2 равна 2, а конечная – 0. Тогда в направлении от узла 1 к узлу 2 поток имеет мощность 2-0=2. Сравнивая конечные и начальные мощности потока для всех дуг сети, мы получаем конечную модель потоков. Задача. Чему равен максимальный поток автомашин для системы автодорог? Рассматривается возможность введения секции 3-4 с пропускной способностью 3 тыс. автомашин в час. На сколько увеличится величина максимального потока автомашин?
Литература Просветов Г.И. Дискретная математика: задачи и решения. – М.: БИНОМ. Лаборатория знаний, 2011. Канцедал С.А. Дискретная математика: учеб. Пособие. – М.:ИД «ФОРУМ»: ИНФРА-М, 2011. Стол Р.Р. Множества. Логика. Аксиоматические теории. – М.: Просвещение, 1968. Андерсон Дж. А. Дискретная математика и комбинаторика. – М.: Вильямс, 2003. Асеев Г.Г., Абрамов О.М., Ситников Д.Э. Дискретная математика. – Ростов н/Д: Феникс, Харьков: Торсинг, 2003.
Дата добавления: 2014-11-29; Просмотров: 608; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |