КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лазерные установкиВведение. Классификация электротехнологических установок Иваново, 2011 ОСНОВЫ ЭЛЕКТРОТЕХНОЛОГИИ
Составил: А.М. СОКОЛОВ
Литература
Основная
1. Лазерная техника и технология. Кн. 1 – Кн.7, под ред. А.Г. Григорянца, авт: В.С. Голубев, Ф.В. Лебедев, А.Г. Григорянц и др. М., Высшая школа, 1987г. 2. А.В. Донской, В.С. Клубникин. Электроплазменные процессы и установки в машиностроении. Л. Машиностроение, 1979 г. 3. Основы электронно – лучевой обработки материалов. Н.Н. Рыкалин и др. М.: Машиностроение, 1975 г. 4. А.Л. Лившиц, М.Ш. Отто. Импульсная электротехника. М. Энергоатомиздат, 1983.
Дополнительная
1. Л.Л. Гольдин. Физика ускорителей. М.: Наука 1983 г. 2. процессы и установки электронно – ионной технологии. В.Ф. Попов, Ю.Н. Торин, М.: Высшая школа, 1988 г. 3. О. Звелто. Принципы лазеров. М.: Мир, 1984 г. 4. Мощные газоразрядные СО2 – лазеры и их применение в технологии. Г.А. Абильсиитов, Е.П. Велихов и др. М.: Наука, 1984 г. 5. В.Н. Вакуленко, Л.П. Иванов. Источники лазеров. М.: Сов. радио, 1980 г. 6. Ю.В. Байбородин. Основы лазерной техники. Киев, Высшая школа, 1988г
Электротехнологические установки также называют высоковольтные электрофизические технологические установки. Такие устройства позволяют использовать энергию сильных электрических и магнитных полей в различных технологических процессах и устройствах. Применение электрических и магнитных полей в технологии основано на превращении (преобразовании) энергии электрического поля высокого напряжения и энергии магнитного поля в другие виды энергии, которые в свою очередь используются как рабочий фактор в различных технологических процессах. Все электротехнологические процессы и установки по энергетическим показателям можно разделит на две категории (группы): высокоэнергетические (энергоёмкие, энергонасыщенные) и низкоэнергетические. Деление это довольно условное и четкая грань на данный момент не определена. В настоящем курсе рассматриваются установки данных типов.
Классификация установок по энергетическим показателям:
I группа – высокоэнергетические (энергонасыщенные), II группа – низкоэнергетические.
Установки первой группы характеризуются высокими значениями плотности энергии или мощности в процессе её преобразования и использования. Как правило, в этом случае происходит сильная деформация или нагрев обрабатываемого материала вплоть до его плавления и испарения. Во втором случае наблюдаются относительно невысокие значения плотности мощности, которые не приводят к эффектам, возникающим от высокоэнергетических установок.
К установкам I группы можно отнести следующие устройства:
- электротермические установки, в которых электрическая энергия преобразуется в тепловую, например, за счёт активного сопротивления или нагрева в электромагнитном поле.
- лазерные технологические установки, в которых энергия электрического поля с помощью электрического разряда в газах преобразуется в энергию направленного излучения (потока фотонов).
- электроплазменные установки, в которых электрическая энергия посредством дугового разряда в газе преобразуется в тепловую энергию высокотемпературной плазмы.
- ускорители заряженных частиц (электронно-лучевые установки). В них энергия электрического (или магнитного) поля преобразуется в кинетическую энергию движущихся заряженных частиц.
- импульсные установки, работают на основе накопленной энергии. В таких установках энергия электрического или магнитного поля, запасённая в емкостных или индуктивных накопителях энергии превращается в механическую и тепловую энергию.
К установкам II группы (низкоэнергетические):
- установки для технологического использования электрических полей и разрядов в газах: поверхностная обработка материалов для очистки, модификации др., электрография, электрокаплеструйная печать;
- электрогазодинамические (электроаэрозольные) установки: электроочистка газов, электроокраска, электрооперация инанесение порошковых покрытий, электрические воздействия на атмосферные процессы, нейтрализация статического электричества;
- электрохимические установки и технологии: размерная электрохимическая обработка, электролиз, гальванотехника, озонные технологии;
- электровакуумные установки по обработке материалов тлеющим разрядом и нанесении покрытий;
- электромагнитные устройства для фиксации объектов в пространстве стабилизация плазменного шнура термоядерного реактора, магнитная подвеска;
- электромагнитные устройства с использованием ферромагнитных композиций и жидкостей (например, для нанесения покрытия, герметизация и т.д.).
К числу электротехнологических установок следует отнести электрические машины, электродвигатели (поскольку в них энергия электромагнитного поля преобразуется в механическую энергию), а также электросварочные аппараты и электродуговые печи. Поскольку эти устройства подробным образом рассматриваются в других дисциплинах, то в настоящем курсе их рассмотрение опускается. Лазерные и электрофизические технологические установки и их широкое применение представляет собой одно из новейших и перспективнейших направлений научно-технического прогресса в настоящее время. История развития этого направления непродолжительна, порядка 15÷20 последних лет. Но при этом было установлено, что применение лазерных и электрофизических установок обеспечивает значительный технический, экономический и социальный эффект. Например, значительно увеличивается производительность многих технологических процессов (скорость лазерной резки металлов не менее чем в 3 раза выше скорости традиционных способов резки, а при пробивке отверстий в 10 и 100 раз). Повышается качество изделий, например, при использовании лазерной и электронно-лучевой технологии в производстве микросхем повышается выход готовой продукции, стабильности параметров, надёжности микросхем. Некоторые технологические операции могут быть выполнены только с использованием лазерных и электрофизических установок (пробивка очень малых отверстий в сверхтвёрдых материалах, получение сверхчистым металлов с помощью электронно-лучевых и электроплазменных устройств.)
Дата добавления: 2014-11-29; Просмотров: 726; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |