Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ультраструктурная организация клеточной мембраны




Под электронным микроскопом мембрана имеет вид трехслой­ной структуры — два темных слоя по краям и один светлый в сере­дине — «прозрачный» для электронов; толщина ее около 10 нм. К настоящему времени структурная организация нервной мембраны до конца не выяснена. Вместе с тем использование различных фи­зических и химических методов позволило создать несколько мо­делей клеточной мембраны. На рисунке 2.4, Б представлен фраг­мент строения мембраны в соответствии с твердокаркасной жид-костно-мозаичной моделью. Мембрана состоит главным образом из липидов и белков с примесью углеводов. Липиды представлены фосфолипидами или гликолипидами. Жирно-кислотный состав липидов весьма разнообразен, однако преобладают в них пальми­тиновая и олеиновая кислоты. Изучение структуры молекул ли­пидов показало, что они имеют полярные «головки» и неполяр­ные «хвосты», т. е на одном конце молекулы имеются заряженные ионные группы, а другой конец является электронейтральным. Сочетание в молекулах липидов двух частей определяет их способ­ность образовывать мембраны. Полярные головки молекул стре­мятся контактировать с водой, а неполярные хвостовые части избегают таких контактов и притягиваются друг к другу благода­ря ван-дер-ваальсовым взаимодействиям. В результате образуются пленки, состоящие из двух слоев липидных молекул. Таким обра­зом, молекулы липидов идеально подходят для образования разде­ла между неводной фазой внутри мембраны и водными внутри- и внеклеточными пространствами.

Мембранные белки подразделяют на две большие группы в зависимости от характера взаимодействия с бислоем липидов. Первая группа — это периферические белки, которые взаимо­действуют с полярными поверхностными частями липидов элек­тростатически (см. рис. 2.4, Б). Вторая группа — интегральные белки, в которых много неполярных аминокислотных остатков, взаимодействующих с гидрофобной внутренней областью бислоя мембраны (т. е. хвостами липидов) с помощью ван-дер-ваальсо-вых сил. Возможны следующие варианты расположения интеграль­ных белков в мембранах (см. рис. 2.4, Б): белок полностью по­гружен в бислой; сравнительно небольшая гидрофобная часть белка погружена в мембрану, пересекая при этом всю ее толщину, а большая (гидрофильная) часть обращена в водную среду; гид­рофобная часть белка (гидрофобный «якорь») проникает только на глубину фосфолипидного монослоя.

По функциям периферические белки делятся на регуляторно-сигнальные (белки внеклеточного матрикса: фибронектин, лами-нин, коллаген), структурно-каркасные (актин-спектриновые ком­плексы), обеспечивающие подвижность внутриклеточных струк­тур и отдельных клеток (белки микротрубочек и микрофиламен-


 



1*




 

Рис. 2.4. Схема регистрации мембранного потенциала (А) и фрагмент клеточной мембра­ны (Б) нервной клетки:

А: 1 — нервная клетка; 2— микроэлектрод; 3 — электрод сравнения; Д,х — входное сопротивле­ние регистрирующей системы; стрелками показано направление движения регистрируемого ионного тока; Б: 7 —липидный бислой; 2— интегральные белки; 3 — ионный канал; 4— эле­мент спектриновой сети; 5 — коммутационные белки

тов). Среди основных функций интегральных белков можно выде­лить транспортную, рецепторную и ферментативную. Транспорт­ные белки осуществляют перенос ионов и незаряженных молекул через мембрану, они формируют каналы пассивного и активного транспорта. Рецепторные (т. е. воспринимающие) белки чрезвычай­но разнообразны и участвуют в восприятии различных химических и физических стимулов, воздействующих на клетку. Ферментатив­ные белки обеспечивают биохимические реакции, протекающие на клеточных мембранах. Согласно модели (см. рис. 2.4, Б) липидный бислой заполняет ячейки каркаса, образованные связанными меж­ду собой определенным образом периферическими и интегральны­ми белками. Вместе с тем часть белков не входит в состав каркаса, а находится в свободном состоянии. Структура белкового каркаса динамична и в зависимости от физиологического состояния клет­ки может изменяться в результате включения или удаления различ­ных структурных и функциональных (рецепторы, ферменты) эле­ментов. Таким образом, по современным представлениям клеточ­ная мембрана имеет довольно сложную структуру, может выпол­нять многочисленные и чрезвычайно важные операции для функционирования клетки, и в том числе для ее возбуждения.





Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1157; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.