КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пожароопасные категории В1…В4 1 страница
Примечания. 1. В помещениях категорий В1…В4 допускается наличие нескольких участков с пожарной нагрузкой не превышающей приведенных значений. При этом в помещениях категории В4 расстояния между этими участками должны быть более предельных l пр. В противном случае помещение относится к категории В3. 2. Если при определении категорий В2 или В3 количество пожарной нагрузки Q соответствует условию Q ³ 0,64· g·H2, то помещение будет относиться к категориям В1 или В2 соответственно.
Участком размещения пожарной нагрузки из твердых горючих и трудногорючих материалов (ТГМ) считается часть площади пола помещения, на которой складированы ТГМ или изделия из них, рабочие места, столы, ремонтные позиции и т.п. при наличии между ними проходов (промежутков) технологического значения шириной не более 1,5 м. Проходы и проезды более 1,5 м являются границами участка. Участком размещения пожарной нагрузки, состоящей из ЛВЖ и ГЖ, считается площадь аварийного разлива жидкости на пол или площадь, ограниченная местными противопожарными преградами в виде поддонов, приямков, бортиков, вмещающими весь объем аварийного разлива. В помещениях категории В4 расстояния между отдельными участками должны быть более предельных l пр. в зависимости от величины критической плотности падающих лучистых потоков q кр (таб. 3.7): q кр, кВт/м2 5 10 15 20 25 30 40 50 l пр, м 12 8 6 5 4 3,8 3,2 2,8 Если пожарная нагрузка состоит из различных материалов, то значение q кр определяется по материалу с минимальным значением q кр.. Для материалов с неизвестными значениями q кр. принимается l пр ³ 12 м. После определения категорий взрывопожарной опасности отдельных помещений, определяют категорию здания в целом.
Таблица 6 Критические плотности падающих лучистых потоков q кр
Здание относится к категории А, если в нём суммарная площадь помещений категории А превышает 5% площади всех помещений или 200 м2. Допускается не относить здание к категории А, если суммарная площадь помещений категории А в здании не превышает 25% суммарной площади всех размещенных в нём помещений (но не более 1000 м 2) и эти помещения оборудуются установками автоматического пожаротушения. Здание относится к категории Б, если одновременно выполнены два условия: - здание не относится к категории А; - суммарная площадь помещений категорий А и Б превышает 5% суммарной площади всех помещений или 200 м2. Допускается не относить здание к категории Б, если суммарная площадь помещений категории А и Б в здании не превышает 25% суммарной площади всех размещенных в нём помещений (но не более 1000 м2), и эти помещения оборудуются установками автоматического пожаротушения. Здание относится к категории В, если одновременновыполняются два условия: - здание не относится к категориям А и Б; - суммарная площадь помещений категорий А, Б, и В1…В3 превышает 5% (10%, если в здании отсутствуют помещения категорий А и Б) суммарной площади всех помещений. Допускается не относить здание к категории В, если суммарная площадь помещений категории А, Б и В1…В3 в здании не превышает 25% суммарной площади всех размещенных в нём помещений (но не более 3500 м2), и эти помещения оборудуются установками автоматического пожаротушения. Здание относится к категории Г, если одновременновыполняются два условия: - здание не относится к категориям А, Б или В; - суммарная площадь помещений категорий А, Б, В1…В3 и Г превышает 5% суммарной площади всех помещений. Допускается не относить здание к категории Г, если суммарная площадь помещений категории А, Б, В1…В3 и Г в здании не превышает 25% суммарной площади всех размещенных в нём помещений (но не более 5000 м2), и помещения категорий А, Б, В1…В3 оборудуются установками пожаротушения. Здание относится к категории Д, если оно не относится к категориям А, Б, В или Г. При этом помещения категории В4 учитываются в площади помещений категории Д. В случае, если использование расчетных методов определения взрывопожарной опасности объектов не представляется возможным, нормы /112/ допускают использование ведомственных норм технологического проектирования или специальных перечней, утвержденных в установленном порядке. Поэтому с практической точки зрения, для определения категорий помещений по взрывопожарной и пожарной опасности предприятий железнодорожного транспорта, удобно пользоваться справочным перечнем, приведенным в /113/. В зависимости от функционального назначения помещений и зданий, с учетом особенностей находящихся в них людей (возраст, физическое состояние, возможность пребывания в состоянии сна и т.п.), они классифицируются по функциональной пожарной опасности (табл.3.8). Согласно Правилам устройства электроустановок (ПУЭ) /114/, помещения и наружные установки классифицируются по взрывоопасным и пожароопасным зонам. Взрывоопасной зоной называется помещение или ограниченное пространство в помещении (в радиусе 5 м) или наружной установке, в котором имеются или могут образоваться взрывоопасные смеси. Взрывоопасные зоны подразделяются на шесть классов (табл.3.9). Пожароопасной зоной называется пространство внутри и вне помещений, в пределах которого постоянно или периодически обращаются горючие (сгораемые) вещества и в котором они могут находиться при нормальном технологическом процесс или при его нарушениях. Пожароопасные зоны подразделяются на четыре класса (табл.3.10). Класс взрыво и пожароопасных зон, в соответствии с которым выбирают электрооборудование, определяется технологами совместно с электриками проектной или эксплуатирующей организации. Также как и категории помещений, классы зон могут устанавливаться ведомственными нормами технологического проектирования.
Таблица 7 Классы функциональной пожарной опасности зданий
Таблица 8 Классы взрывоопасных зон
* Зоны данных помещений не относятся к взрывоопасным, если работа с ГГ и ЛВЖ производится в вытяжных шкафах или под вытяжными зонтами.
Таблица 9 Классы пожароопасных зон
ЭКОЛОГИЧЕСКИЙ ВРЕД, НАНОСИМЫЙ ПОЖАРАМИ Загрязнение окружающей среды (ОС) в результате штатных выбросов объектов хозяйственной деятельности, транспорта, пожаров и аварий ухудшает экологическое состояние среды обитания, причиняет вред здоровью людей и экосистемам. Во всех перечисленных случаях в ОС попадают вредные и токсичные (ядовитые) вещества. В целях обеспечения безопасности людей, сохранения флоры и фауны для многих веществ, попадающих в ОС: воздух, воду, почву установлены предельно допустимые концентрации (ПДК), которые не могут вызывать заболевания людей. Степень загрязнения ОС по ПДК при штатных ситуациях регламентируется предельно допустимыми выбросами (ПДВ) вредных веществ, исходя из условий, при которых концентрации загрязнителей в ОС не превышали предельно допустимых концентраций (ПДК). Для этого на промышленных предприятиях, транспорте, как правило, внедрены системы очистки выбросов, которые позволяют обеспечить приемлемое качество воздуха, воды, почв. За выбросы загрязняющих веществ стационарными и передвижными источниками в пределах установленных норм (ПДВ), а также за сверхлимитные и аварийные выбросы устанавливается плата, являющаяся возмещением ущерба от загрязнения ОС, причинения вреда здоровью населения и состоянию природных экосистем. В результате многочисленных причин, в том числе стихийных бедствий, нарушения производственных процессов, износа оборудования, человеческого фактора и др., на промышленных предприятиях, в коммунально-бытовой сфере, на транспорте могут возникать аварии, катастрофы, пожары. Пожары являются наиболее распространенными аварийными ситуациями, при которых происходит загрязнение ОС. В условиях пожара горение, как правило, протекает в диффузионном режиме. Вещества и материалы при этом сгорают не полностью и наряду с частичками сажи попадают в ОС в виде газообразных, жидких продуктов горения. Тепловые потоки, регулирующие газообмен и развитие пожара, обеспечивают перенос загрязнителей в пространстве. Течение пожара характеризуется определенными параметрами, например, массовой скоростью выгорания пм, кг/(м -с), площадью пожара 5Л, м, плотностью теплового потока Q, Вт/м, продолжительностью тп, с, скоростью газообмена и дымовыделения, температурой Тг и т.д. Эти параметры определяют обстановку и достигаемые в конкретных условиях значения опасных факторов пожара, приводят к нарушению условий жизнедеятельности, заболеваниям, травмам, гибели людей. Опасные факторы пожара (ОФП): токсичность продуктов горения, плотность дыма, температура пожара и др. можно назвать экологически опасными факторами пожара (ЭОФП). Они являются негативными абиотическими факторами для экосистем суши и водных объектов. Экологическая опасность пожаров прямо обусловлена изменением химического состава, температуры воздуха, воды и почвы, а косвенно и других параметров ОС. В природной среде наиболее опасны по своему воздействию растительные пожары. При лесных пожарах отмечается загрязнение воздуха вредными и токсичными газами, парами и аэрозолями. В целом на планете 20 % загрязнителей поступает в атмосферу в результате лесных пожаров. Только в Северном полушарии выбросы монооксида углерода (СО) составляют около 11-106 т/год, аэрозолей (35-360)-106 т/год, аммиака - до 12-106 т/год. Космическая аэрофотосъемка многократно фиксировала во время лесных пожаров огромные облака сажи над территорией Сибири, США. Лесные пожары считают вторым после океана источником выбросов в атмосферу хлорорганических соединений, например хлористого метила. При лесных, торфяных, степных пожарах уничтожается растительный покров суши и как следствие - уменьшается продуцирование кислорода. Серьезное влияние на ОС оказывают пожары в техносфере: в промышленности, на транспорте и др., так как горючие материалы чрезвычайно разнообразны по своему составу, а пожар может возникнуть практически на любом объекте. В результате в продуктах горения могут присутствовать самые разнообразные по химическому строению и токсичности соединения. Среди самых распространенных - оксиды углерода, серы, азота, хлористый водород, углеводороды различных классов, спирты, альдегиды, бензол и его гомологи, полиароматические соединения (ПАУ) и др. Среди самых опасных - соли и оксиды тяжелых металлов, бенз(а)пирен (БаП), диоксины. Большинство перечисленных химических веществ оказывает вредное воздействие на живые организмы. Так, диоксины, ПАУ и др. способны вызывать онкологические заболевания у людей, а оксиды серы - гибель растительности. Наиболее опасные ситуации, связанные с воздействием на ОС, возникают на пожарах при разлитии ЛВЖ и ГЖ на нефтебазах (в резервуарах, в обваловании и за его пределами), транспортных средствах (при морских перевозках), на химических предприятиях, радиационных объектах, складах удобрений, пестицидов, аварийно химически опасных веществ (АХОВ). Так, в Швейцарии при тушении пожара на складе с пестицидами и удобрениями часть ядохимикатов с огнетушащей пеной попала в р. Рейн, сделав значительный участок реки безжизненной на многие годы. Наряду с токсичными и вредными продуктами горения загрязнение ОС может быть вызвано огнетушащими веществами, используемыми в пожаротушении. Известно разрушающее действие фреонов на озоновый слой. Некоторые галогеноуглеводороды (например, фреон 13В1, 114В2) особо опасны, так как способны долгое время находиться в атмосфере и эффективнее других взаимодействуют с озоном на больших высотах. Поверхностно-активные вещества (ПАВ), применяемые в пожарной охране как смачиватели и пенообразователи, также причиняют вред ОС. Попадая в водоемы, они препятствуют поступлению кислорода. Многие ПАВ биологически трудно разлагаются (ПО-1, ПО-10, Форэтол, ПО-6К). В результате происходит гибель фитопланктона, рыб. Кроме того, при пожарах на людей, флору и фауну оказывает негативное влияние тепловой фактор (для человека критической во время пожара принята температура, равная 70 °С).В зоне горения температура может возрастать до 800-1500°С, а иногда (при огненном шторме, горении металлов) и выше. Размер зоны теплового воздействия зависит от интенсивности мас-со- и газообмена, вида горючего и т.д. Вблизи и в зоне горения причинение вреда природной среде и технообъектам неизбежно. Действие высоких температур во время пожара приводит к гибели растительности, либо заставляет представителей фауны искать новые места обитания, подчас менее благоприятные, так как отдельные виды флоры и фауны способны существовать в определенном температурном режиме. При лесных пожарах тепловой фактор изменяет минеральный состав почвы, кислотность (рН) почвенного покрова, происходит смена видов растительности. Таким образом, степень риска гибели от температурного фактора зависит от вида пожара и типа экосистемы, которая подвергается тепловому воздействию. До настоящего времени ухудшение экологической обстановки вследствие пожаров зафиксировано на местном и региональном уровне. Например, установлено, что в глобальном масштабе с учетом всех пожаров, происходящих на планете, концентрация кислорода и углекислого газа в атмосфере изменяется ничтожно мало. Подсчитано, что даже на сгорание всего известного запаса горючих ископаемых необходимо затратить не более 0,1 части кислорода воздуха. Однако в некоторых регионах земного шара расход кислорода на сжигание различных видов топлива превышает его поступление в атмосферу за счет фотосинтеза, несмотря на лесовосстановительные работы. Так, в США расход кислорода в 2 раза больше его продуцирования. Высказывается мнение, что в будущем содержание кислорода в глобальном масштабе может уменьшиться до критического, опасного для жизни людей уровня. Возможные негативные последствия пожаров для ОС во времени и пространстве зависят от вида и концентрации токсичных веществ, попавших в воздух, на почву или в водоем, температуры пожара и внешних факторов (скорости ветра, других погодных условий, рельефа местности и т. д.). Пожары на промышленных объектах более опасны. На урбанизированных территориях всегда опасны крупные пожары на складах и промышленных объектах, хотя они происходят значительно реже, чем в жилых зданиях. В различных отраслях народного хозяйства РФ функционирует более 8000 взрывопожароопасных производств. Наиболее часто аварии и пожары возникают на предприятиях химической, нефтехимической, нефтеперерабатывающей промышленности. При таких пожарах может происходить загрязнение непосредственно всех трех природных сред: воздуха, воды и почвы. В результате естественных процессов загрязняющие вещества могут переходить из одной среды в другую, мигрировать во внутренние водоемы, подземные воды и т.д. Основной перенос загрязнителей при пожарах происходит по воздуху. Этому способствуют два обстоятельства. Во-первых, большинство токсичных соединений с продуктами горения поступает в воздух в виде направленных конвективных потоков. Во-вторых, переносу загрязнителей способствуют ветры. Выбросы от пожаров можно характеризовать как кратковременные и высокотемпературные. Дальность распространения загрязнений от пожаров зависит от двух главных факторов - высоты факела и параметров ветра. Максимальное расстояние, на которое могут переноситься продукты горения, определяется скоростью вертикальной диффузии, предельной высотой, на которую поднимается аэрозоль, а также скоростью его оседания. Чем больше отношение высоты подъема к скорости оседания аэрозоля, тем дальше он уносится. Расчетные и экспериментальные данные показывают, что максимальная концентрация загрязнителей от источников выбросов, включая пожары, достигается по направлению ветра на расстоянии, равном 10-20-кратной высоте источника. При перемещении и рассеивании продукты горения могут взаимодействовать друг с другом и компонентами воздуха, что определяет их концентрацию и продолжительность нахождения в атмосфере (время жизни). Газообразные продукты горения (хлористый водород, аммиак), переносимые конвективными потоками и ветром, при взаимодействии с парами воды образуют жидкие аэрозоли или адсорбируются на частицах сажи и оседают на поверхность суши и растений. На частицах дыма также происходят химические реакции с образованием новых, иногда более токсичных соединений, чем те, которые непосредственно образуются при горении. На поверхности частиц сажи обнаружены: пирен, антрацен, другие полиядерные ароматические углеводороды (ПАУ), сульфосоединения и т. д. Частицы дыма радиусом более 3 мкм могут находиться в воздухе несколько дней, а более мелкие радиусом 0,1-0,3 мкм - остаются там недели и месяцы. Аэрозоли могут оседать под действием силы тяжести, вымываться осадками из воздуха. В результате происходит не только самоочищение атмосферы от продуктов горения, но и загрязнение других сред, а токсичные вещества продолжают оказывать негативное действие на человека, растительность и животных, объекты техносферы (например, хлористый и фтористый водород вызывают коррозию металлов). Устойчивость к загрязнению или степень самоочищения атмосферы за счет химических и физических процессов зависит от погодно-климатических условий, рельефа местности, наличия растительности и т. д., то есть связаны с географическими координатами источника выброса. Все области суши на территории России, примыкающие к морям и океанам (исключая Каспий), способны очень интенсивно самоочищаться. Кавказский регион, южная часть Сибири, примыкающая к странам Средней Азии и Казахстана, тоже очищаются весьма энергично. Западная Сибирь и внутренние регионы Европейской части РФ обладают средней способностью к самоочищению, а некоторые районы Восточной Сибири и район Красноярского края очищаются очень слабо. Для более точных прогнозов и оценок опасности загрязнения необходимо иметь сведения о метеоусловиях во время и на месте пожара. Это связано с тем, что на химические и физические процессы в атмосфере с участием загрязняющих веществ оказывают влияние облачность, осадки, скорость и направление воздушных течений, которые формируются под действием температуры и давления воздуха, рельефа местности и других факторов. Характеристика ветра на территории РФ и стран СНГ представлены в ГОСТ 24728-81, а сведения о климате и ландшафте во многих изданиях по географии, например: Физическая география (под ред. К.В. Пашкан. М., 1995). Таким образом, пожар - такой же источник загрязнения ОС, как объекты промышленности, сельского хозяйства и другие отрасли хозяйственной деятельности человека - различен только масштаб воздействия. Любой пожар оказывает отрицательное влияние на экологическое состояние окружающей среды и изменяет границы экологической ниши, условия существования живых организмов. Диапазон влияния отдельных пожаров на параметры ОС очень широк. Пожары в жилых домах, административных и других непроизводственных зданиях не оказывают влияния на крупномасштабные и глобальные биосферные процессы. Опасность таких пожаров ограничивается, главным образом, токсическим загрязнением воздуха внутри и вблизи помещений и носит локальный характер. Пожары на складах удобрений, в местах добычи нефти, торфа и т.д. значительно загрязняют среду обитания на местном и региональном уровне. Дым от крупных пожаров вызывает изменение освещенности, температуры воздуха, влияет на количество атмосферных осадков. Кроме того, дымовой аэрозоль и газообразные продукты, взаимодействуя с атмосферной влагой, могут вызывать кислотные осадки - дожди, туманы. Попадание на листья дыма, росы, дождя вызывает болезнь и гибель растений. Выделение большого количества дыма при крупных пожарах уменьшает количество солнечной радиации, поступающей к земной поверхности, и, как следствие, приводит к климатическим изменениям продолжительностью несколько дней, недель, месяцев (лесные пожары, пожары на нефтяных скважинах, например, в Кувейте в 1991 году). Эти факторы влияют на рост растений, особенно если совпадают с вегетационным периодом. Массовые пожары, при которых выделяется большое количество дыма, способны вызывать похолодание на местном и региональном уровне, но этот процесс несуществен для растительности средних широт земного шара, устойчивых к низким температурам (в районах умеренного климатического пояса максимально низкие переносимые температуры для древесных пород лежат в интервале -15...-20 °С). Выживаемость растений в зависимости от освещенности изучена и отражена в литературе крайне слабо. Однако отмечено, что в умеренном поясе, чем медленнее рост, тем лучше растения переносят "затенение". Поэтому злаки и другие культурные растения хуже переносят уменьшение освещенности, чем древесные породы растительности. В прямой зависимости от видов и масштабов пожара находится загрязнение почв и водоемов огнетушащими пенами, пролитой на тушение водой, самими горючими веществами, например нефтью при разливе горючих жидкостей (ГЖ). Вода, используемая при тушении, может содержать антипирены и продукты пиролиза горючих материалов. В воду могут попадать другие добавки, вводимые в горючие материалы. Эти вещества во время тушения могут попадать в водоемы через канализационную систему из грунтовых вод, а также при осаждении из воздуха, куда они выносились конвективными потоками с остальными продуктами горения. Многие токсичные вещества, например тяжелые металлы, диоксины, попавшие в воду или на почву, обладают способностью накапливаться в организмах рыб, птиц и в дальнейшем по пищевой цепи попадают в организм человека. Таким образом, загрязнение ОС в результате пожаров и аварий может происходить опосредованно и проявляться спустя годы. В связи с этим представлять меру опасности, которая вызвана пожарами и авариями, крайне важно, так как реальная оценка вида и масштаба загрязнения ОС может уменьшить риск последствий и повысить уровень обеспечения экологической безопасности. Стихийные пожары оказывают разрушительное воздействие на лесные экосистемы, уничтожая напочвенный покров и фауну, повреждая и нередко губя древостои, вызывая повреждение почвы и ее эрозию. Эмиссии углерода от лесных пожаров повышают концентрацию парниковых газов в атмосфере и тем самым способствуют глобальным изменениям климата. На долю лесных пожаров в нашей стране приходится ежегодно более половины всех погибающих насаждений, а площадь гарей в лесном фонде страны в 4,8 раза превышает площадь вырубок.
Дата добавления: 2014-11-29; Просмотров: 2573; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |