Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Контрольная работа. Тема 5.3.Случайные процессы в САУ




Тема 5.3.Случайные процессы в САУ

Тема 5.2. Оптимальные САУ

Тема 5.1. Адаптивные САУ

Тема 4.6. Нелинейные импульсные системы. Цифровые САУ

Тема 4.5. Исследование устойчивости нелинейных систем

Понятия устойчивости по Ляпунову для нелинейных систем. Устойчивость в малом, в большом, в целом, абсолютная устойчивость. Функции Ляпунова. Теоремы Ляпунова об устойчивости. Исследование нелинейных систем с помощью функции Ляпунова. Абсолютная устойчивость. Частотный критерий абсолютной устойчивости, теорема Попова.

[6, с. 513-530].

 

Способы нелинейной импульсной модуляции. Уравнения нелинейных импульсных систем с амплитудно-импульсной модуляцией. Уравнения импульсных систем с широтно-импульсной и времяимпульсной модуляцией. Метод гармонической линеаризации. Устойчивость нелинейных импульсных систем. Теорема Ляпунова. Применение функций Ляпунова. Абсолютная устойчивость, критерий Попова. Цифровые системы автоматического управления и способы их описания.

[6, с. 445-473, с. 683-700].

 

Раздел 5. Особые САУ

 

Классификация адаптивных САУ. Самонастраивающиеся системы, поисковые и беспоисковые. Методы поиска экстремума: сканирование, метод Гауса-Зайделя, метод градиента, метод наискорейшего спуска. Принципы построения беспоисковых самонастраивающихся систем. Адаптивные системы с переменной структурой.

[6, с. 723-740].

Общая постановка задачи оптимального управления. Метод классического вариационного исчисления. Принцип максимума Понтрягина. Задача максимального быстродействия. Метод динамического программирования.

[6, с. 703-720].

Случайные процессы и их характеристики. Расчет линейных непрерывных САУ при случайных воздействиях. Случайные процессы в линейных импульсных системах. Статистическая линеаризация нелинейных элементов.

[6, с. 291-338].

 


 

Контрольная работа предусмотрена только для студентов заочной формы обучения. Для каждой контрольной работы приведено тридцать вариантов заданий. Студент должен выполнить вариант, номер которого совпадает с двумя последними цифрами номера его зачетной книжки. В начале работы следует привести полностью задание и исходные данные, а в конце – список используемой литературы.

Оформляется контрольная работа в ученической тетради рукописным способом, либо печатается на компьютере на стандартных листах формата А4. Графики выполняются с соблюдением требований ЕСКД и следуют по ходу изложения текстового и расчетного материала. Работа предоставляется в деканат не менее, чем за пятнадцать дней до начала экзаменационной сессии. Неряшливо оформленные работы могут быть возвращены студенту без рецензирования. В случае существенных замечаний работа отправляется на доработку. Если замечаний нет, а также при несущественных замечаниях, работа допускается к защите.

Расчеты в контрольной работе можно полностью выполнять вручную, либо частично с использованием ЭВМ. В разделе 4 «Компьютерное моделирование САУ» конспективно излагаются некоторые способы и методы моделирования систем автоматического управления с помощью пакета Matlab.

 

Исходные данные к контрольной работе

Структурная схема линейной САУ представлена на рисунке 1, где соответствующие передаточные функции имеют вид апериодических звеньев:

 

; ; .

 

Параметры Т 1, Т 2, Т 3, K 1, K 3 для каждого варианта задания представлены в таблице 2. Величина коэффициента выбирается далее из условия устойчивости.

 

Рисунок 1

 

Варианты задания приведены в таблице 2.

Таблица 2

 

Номер варианта T 1 T 2 T 3 K 1 K 3
           
  0,01 0,2 0,06 16,5  
  0,02 0,3 0,07   1,1
  0,03 0,4 0,08 15,5 1,2
  0,04 0,5 0,09   1,3
  0,05 0,6 0,1 14,5 1,4
  0,06 0,7 0,15   1,5
  0,07 0,8 0,2 13,5 1,6
  0,08 0,9 0,25   1,7
  0,09   0,3 12,5 1,8
  0,05 1,1 0,15   1,9
  0,06 1,2 0,2 11,5  
  0,07 1,3 0,25   2,1
  0,08 1,4 0,3 10,5 2,2
  0,09 1,5 0,35   2,3
  0,1 1,6 0,4 9,5 2,4
  0,01 0,2 0,1   2,5
  0,02 0,3 0,2 8,5 2,6
  0,03 0,4 0,3   2,7
  0,04 0,5 0,4 7,5 2,8
  0,05 0,6 0,5   2,9
  0,06 0,7 0,6 6,5  
  0,07 0,8 0,7   3,1
  0,08 0,9 0,8 5,5 3,2
  0,09   0,9   3,3
  0,1 1,1 0,4 4,5 3,4
  0,2 1,2 0,5   3,5
  0,3 1,3 0,6 3,5 3,6
  0,4 1,4 0,7   3,7
  0,5 1,5 0,8 2,5 3,8
  0,6 1,6 0,9   3,9

Задание

1. Найти передаточные функции разомкнутой и замкнутой системы: при , (т.е. разомкнута главная обратная связь); при - главная передаточная функция замкнутой системы; при - передаточная функция замкнутой системы по ошибке; при - передаточная функция замкнутой системы по возмущению. Параметры , входят в передаточные функции в общем виде, т.е. в буквенных символах.

2. Найти характеристическое уравнение замкнутой системы. Используя критерий Гурвица, записать в общем виде условия устойчивости. При заданных в таблице 2 параметрах , , , , найти максимальное граничное значение коэффициента передачи при котором система еще устойчива. В дальнейшем полагать .

3. Найти аналитические выражения и построить графики:

– амплитудно-фазовой частотной характеристики (АФЧХ) разомкнутой системы;

– амплитудно-частотной характеристики (АЧХ) разомкнутой системы;

– фазо-частотной характеристики (ФЧХ) разомкнутой системы;

− логарифмических амплитудно- и фазо-час-тотных характеристик (ЛАЧХ и ЛФЧХ) разомкнутой системы;

- вещественной частотной характеристики замкнутой системы;

- амлитудно-частотный характеристики замкнутой системы.

4. Используя полученные и построенные характеристики, найти и оценить следующие показатели качества системы:

- - статическую ошибку при подаче на ее входе единичного ступенчатого воздействия;

- частоту среза системы , запасы устойчивости системы по амплитуде и фазе ;

- показатель колебательности системы ;

- время регулирования tp и перерегулирование .

5.Найти дифференциальное уравнение замкнутой системы, связывающее и (полагая ).

6. Найти уравнения состояния замкнутой системы в векторно-мат-ричном виде, в нормальной форме, связывающие координаты и (полагая ).

Методические указания

 

1.Передаточные функции находятся с использованием правил структурных преобразований [1, с. 27-34].

2.Если найдена главная передаточная функция замкнутой системы в виде , где K = K 1 K 2 K 3 − общий коэффициент передачи прямой цепи, − полином относительно , то характеристическое уравнение замкнутой системы имеет вид:

 

.

 

Коэффициенты зависят от параметров системы , . Условие устойчивости в соответствии с критерием Гурвица для системы третьего порядка имеет вид: , . При заданных из полученных условий устойчивости определяется ограничение на величину коэффициента передачи далее принимается [1, c. 47-50].

3. Определение частотных характеристик и их построение подробно изложены в [1, c. 17, 34]. АФЧХ строится на комплексной плоскости. Ось абсцисс − действительная (), а ось ординат − мнимая (). Частота изменяется от до . Все остальные характеристики имеют ось абсцисс, на которой откладывается частота (для ЛАЧХ и АФЧХ в логарифмическом масштабе) и соответствующую ось ординат (это модуль или фаза).

Все частотные характеристики строятся обычным способом. Задавая величину дискретно: , ,..., находят соответствующее значение ординаты и по точкам строят характеристику. ЛАЧХ обычно строится в виде асимптотической характеристики, состоящей из отрезков прямых.

4. Статическая ошибка определяется по формуле , где . Частота среза определяется по графику ЛАЧХ. Это значение частоты, при котором пересекает ось абсцисс и где . Запасы устойчивости и также находятся из логарифмических характеристик [1, с. 56]. Показатель колебательности определяют из графика амплитудно-частотной характеристики замкнутой системы , как . Время регулирования и перерегулирование ориентировочно можно оценить, используя максимальное значение P max вещественной частотной характеристики и частоту среза .

Графики, связывающие , , P max и представлены в [1, с. 78].

5. Зная передаточную функцию, связывающую изображения входа и выхода системы, нетрудно получить дифференциальное уравнение, связывающее входную и выходную координаты системы [1, c. 33].

6. По дифференциальному уравнению, найденному в предыдущем пункте, легко найти уравнения состояния в нормальной форме [1, с. 90].




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 450; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.