Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Аннуитет





Доверь свою работу кандидату наук!
1500+ квалифицированных специалистов готовы вам помочь

Одним из ключевых понятий в финансовых расчетах является понятие аннуитета. Логика, заложенная в схему аннуитетных платежей, широко используется при оценке долговых и долевых ценных бумаг, в анализе инвестиционных проектов, а также в анализе аренды.

Аннуитет представляет собой частный случай денежного потока. Известны два подхода к его определению. Согласно первому подходу аннуитет представляет собой однонаправленный денежный поток, элементы которого имеют место через равные временные интервалы. Второй подход накладывает дополнительное ограничение, а именно: элементы денежного потока одинаковы по величине. В дальнейшем изложении материала мы будем придерживаться именно второго подхода. Если число равных временных интервалов ограничено, аннуитет называется срочным. В этом случае:

С1 = Сз = ... = Сп = А.

Для оценки будущей и приведенной стоимости аннуитета можно пользоваться вышеприведенными формулами, вместе с тем благодаря специфике аннуитетов в отношении равенства денежных поступлений они могут быть существенно упрощены.

Формула для расчета текущей стоимости аннуитета имеет вид

PVA = A/(1+i)+A/(1+i)2 A/(1+i)3+…+A/(1+i)n.

Введем следующие обозначения

B=A/(1+i),

C=1/(1+i).

В результате получим

PVA=B*(1+C+C2+C3+… +Cn-1) *

Умножая левую и правую части уравнения на величину C

PVA*С = B*(C+C2+C3+… +Cn) **

Вычитая уравнение ** из * получим

PVA*(1-С) = B*(1-Cn).

Или

PVA*[1-1/(1+i)] = A/(1+i)*[1-1/(1+i)n)].

Умножение обеих частей уравнения на величину (1+i) дает

PVA*i = A*[1-1/(1+i)n)]

Или

PVA = A*[1/i-1/(i*(1+i)n)].

Аналогичным образом может быть получено выражение для расчета будущей стоимости аннуитета.

FVA = A+A*(1+i)2 A*(1+i)3+…+A*(1+i)n-1.

Введем обозначения B=A*(1+i)/ и получим

FVA = A*(1+B +B2 B3+…+Bn-1).

Умножим обе части уравнения на величину B.

FVA*B = A*(B +B2 B3+…+Bn).

Вычитая данное уравнение из предыдущего получим,

FVA*(1-B) = A*(1-Bn).

Или

FVA = A/i*[(1+i)n-1].

По аналогии с функциями FM1(i,n)= (1+i)n и FM2(i,n)=1/(1+i)n функции FM3(i,n)= 1/i*[(1+i)n-1] FM4(i,n)=[1/i-1/(i*(1+i)n)] и табулированы для различных значений i и п. Экономический смысл FМЗ(i,п), называемого мультиплицирующим множителем для аннуитета, заключается в следующем: он показывает, чему будет равна суммарная величина срочного аннуитета в одну денежную единицу (например, один рубль) к концу срока его действия. Предполагается, что производится лишь начисление денежных сумм, а их изъятие может быть сделано по окончании срока действия аннуитета. Множитель FМ4(i,п) показывает текущую стоимость аннуитета в одну денежную единицу при заданных значениях i и n.



При выполнении некоторых инвестиционных расчетов используется техника оценки бессрочного аннуитета. Аннуитет называется бессрочным, если денежные поступления продолжаются достаточно длительное время (в западной практике к бессрочным относятся аннуитеты, рассчитанные на 50 и более лет).

В этом случае прямая задача смысла не имеет. Что касается обратной задачи, то ее решение может быть получено на основе формулы

PVA = A*[1/i-1/(i*(1+i)n)]

при n стремящейся к бесконечности.

PVA = A/i

Приведенная формула используется для оценки целесообразности приобретения бессрочного аннуитета. В этом случае известен размер годовых поступлений; в качестве коэффициента дисконтирования i обычно принимается гарантированная процентная ставка (например процент, предлагаемый государственным банком).

Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой




Дата добавления: 2014-12-07; Просмотров: 429; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:
studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.