Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Возможности формализации деятельности оператора




 

Применение математических методов в инженер­ной психологии основано во многих случаях на фор­мализации деятельности оператора. В самом общем случае под формализацией (от лат. forma — вид, образ) понимается уточнение содержания познания, осуще­ствляемое посредством того, что изучаемому объекту (в инженерной психологии — деятельности оператора) определенным образом сопоставляются некоторые материальные конструкции, обладающие относитель­но устойчивым характером и позволяющие в силу это­го выявлять и фиксировать существенные и закономер­ные стороны рассматриваемых объектов. Особенность формализации как гносеологического приема состоит в том, что совершающееся с ее помощью выявление и уточнение содержания происходит через выявление и фиксацию его формы. Во всякой формализации всегда присутствует момент огрубления живой, развивающей­ся действительности. Однако это огрубление является необходимой стороной процесса познания.

Основное значение для формализации имеют зна­ки специального характера, в частности, применяемые в математике. Проведение формализации всегда сопровождается противоречием между формой и содержа­нием. Опыт показывает, что если формализуется дос­таточно богатая содержанием теория, область научно­го знания (например, деятельность оператора), то она не может быть полностью отображена в формальной системе; в этой области всегда остается невыявленный, неформализуемыи остаток. Это несоответствие между формализацией и формализуемым содержанием выс­тупает в качестве внутреннего источника развития формально-логических средств науки. Преодоление указанного противоречия происходит путем построе­ния новых формальных систем, в которых формализу­ется часть того, что не было учтено при предшествую­щих формализациях. Таким образом осуществляется все более глубокая формализация содержания, никог­да, однако, не достигающая абсолютной полноты*.

Рассмотренные общефилософские и общеметодо­логические проблемы формализации научного знания имеют непосредственное отношение к инженерной психологии. Именно в ней открываются особенно боль­шие возможности для формализации деятельности человека. Этому способствуют следующие обстоятель­ства [77]. В изучаемой здесь деятельности человек ре­шает ограниченный круг технических задач, а его дей­ствия зачастую оказываются детерминированными извне техническими условиями. Помимо этого для операторской деятельности отбирается определенный круг людей, психофизиологические показатели кото­рых отвечают соответствующим требованиям. Оба эти обстоятельства способствуют как ограничению числа существующих психологических переменных, опреде­ляющих поведение операторов, так и уменьшению различий в их поведении. Все это и дает основание для формализованного описания психологических законо­мерностей деятельности оператора.

Формализация деятельности оператора, как отме­чается в [207], предполагает в первую очередь матема­тическое моделирование его трудового процесса. В об­щем случае модель любой деятельности может быть представлена в виде набора взаимосвязанных между собой частных моделей. При моделировании необхо­димо учитывать форму и тип труда (управление систе­мой, техническое обслуживание, ремонт и т. п.); состав­ляющие трудовой процесс операции, их взаимосвязь, точность и время выполнения; влияние на них направ­ленности деятельности, дефицита времени, внешних условий и многих других факторов.

Применяемые на практике модели можно класси­фицировать по функциональному назначению (модели информационного поиска [62], принятия решений [17], значащих переживаний [77], приобретения и утраты навыков [10], технической диагностики и устранения неисправностей [17] и др.) и принципу построения {информационные, игровые, структурно-алгоритмичес­кие и пр.). Приведенные модели, классифицированные по функциональному назначению, являются частными моделями, отображающими либо отдельные стороны деятельности, либо ее отдельные количественные ха­рактеристики (точность, надежность, производитель­ность и т. п.), но не моделируют профессиональную деятельность в целом как специфическое сложное явление. Некоторые из этих моделей будут рассмотре­ны при изучении соответствующих разделов.

Полная модель деятельности человека может быть получена лишь на основе комбинированного использова­ния частных моделей с учетом специфики связи между ними, обусловленными психофизиологическими возмож­ностями человека и характерными для данной системы условиями его деятельности. В таких моделях возможнос­ти формализации, как правило, меньше по сравнению с частными моделями. В них обычно остается не учитывае­мый, не формализуемый остаток, поэтому полные модели являются большим огрублением действительности, чем частные модели. Однако это обстоятельство не может служить основанием для отказа от формализации деятель­ности оператора. Важно только учитывать степень огруб­ления и с учетом этого применять созданные модели на практике и делать соответствующие выводы. Наличие же неформализуемого остатка является обычно стимулом для дальнейшего совершенствования разработанных моделей. Разработка математических моделей деятельности опера­тора является важнейшим направлением применения ма­тематических методов в инженерной психологии.

Анализ деятельности человека в СЧМ показывает, что современный уровень развития отдельных матема­тических методов и недостаточная степень познания психофизиологических и интеллектуальных характери­стик, а также поведенческих мотивов человека не по­зволяют в настоящее время предложить универсаль­ного метода формализации, адекватно описывающего все эти процессы в деятельности человека. Поэтому для описания и оценки деятельности человека в инже­нерной психологии используется большое число раз­нообразных математических методов. В связи с этим выбор математического аппарата и построения на его основе адекватной математической модели становится самостоятельной проблемой. Чтобы уменьшить затруд­нения, возникающие при выборе подходящей модели, стремятся каким-то образом классифицировать уже известные модели, методы их построения и анализа, а также определить возможные области их применения. Одна из таких классификаций, основанная на делении моделей на частные и общие, рассмотрена выше. Дру­гие подходы к классификации математических моде­лей приведены в работах [40, 107, 178]. Однако эти классификации несколько громоздки и не всегда дос­таточно информативны, что затрудняет их практичес­кое использование.

Одной из наиболее полных и пригодных для прак­тического использования является классификация, предложенная А.В. Кудрявцевым [83]. Она приведена в табл. 8.1. В этой классификации выделены два основ­ных класса моделей операторской деятельности: моде­ли конкретной задачи и модели оператора (класса за­дач). Модели первого класса нестабильны, поскольку изменяются от задачи к задаче даже для одного режи­ма работы оператора. В то же время эти модели доволь­но универсальны за счет более широкой сферы при­менения. Отмеченных недостатков в определенной мере лишены модели оператора, однако каждая из них (кроме, пожалуй, структурно-алгоритмических) может быть эффективно использована только в своей специ­фической области.

Для построения моделей деятельности оператора, как следует из табл. 8.2, может быть использован раз­личный математический аппарат.

Таблица 8.1

 

Классификация математических моделей операторской деятельности

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Класс моделей Тип моделей Основной математический аппарат Основное назначение (основная область применения)
Модели задачи автоматные теория автоматов формальное описание деятельности
алгоритмические теория алгоритмов
сетевые методы сетевого планирования и управления и другие сетевые методы
теоретико-множественные теория множеств
структурные теория надежности, теория вероятностей оценка надежности деятельности
Модели оператора (модели класса задач) структурно-алгоритмические теория графов, матричная алгебра, теория вероятностей формальное описание деятельности
сервомодели (модели слежения) теория автоматического управления задачи компенсаторного и преследующего слежения
сервисные (модели обслуживания) теория массового обслуживания задачи обслуживания различного рода заявок
информационные теория информации задачи распределения и ретрансляции информации
игровые теория игр и статистических решений задачи принятия решений в условиях неопределенности и противодействия, в конфликтной или проблемной ситуации
эвристические эвристическое программирование, теория искусственного интеллекта
ситуационные теория продуктивного мышления, теория нечетких множеств

Таблица 8.2

 

Возможности применения математических методов в инженерной психологии

 

 

Метод Степень выполнения требований
размерность неопределенность динамичность факторность описательность
Теория информации высокая средняя отсутствует средняя средняя
Теория массового обслуживания высокая средняя средняя средняя отсутствует
Теория автоматического управления средняя малая высокая отсутствует малая
Теория автоматов, теория алгоритмов малая средняя средняя отсутствует средняя
Теория игр и статистических решений средняя высокая средняя средняя высокая
Сетевые методы малая средняя средняя отсутствует средняя
Теория множеств малая высокая средняя средняя средняя

 

К математическим методам в инженерной психо­логии предъявляются следующие требования: размер­ность (описание процессов управления со многими неизвестными), динамичность (учет фактора времени), неопределенность (учет случайных, вероятностных составляющих в деятельности оператора), факторностъ (учет специфических особенностей поведения челове­ка, например, напряженности, эмоций и т. п.), описа-тельность (возможность описания внутренних, психо­физиологических механизмов деятельности человека). Кроме того, применяемые методы должны допускать возможность описания деятельности человека и фун­кционирования машины с единых позиций, с помощью единых показателей и характеристик [196]. Сравни­тельная характеристика различных методов приведе­на в табл. 8.2.

Из этой таблицы видно, что метод, одинаково хоро­шо учитывающий все характеристики деятельности оператора, практически отсутствует. Каждый из рас­смотренных методов оптимален лишь по одной — двум характеристикам, иными словами, удачно описывает лишь определенные стороны деятельности оператора. Поэтому при решении инженерно-психологических задач очень часто приходится применять комбинацию тех или иных методов. Это можно сделать, воспользо­вавшись данными табл. 8.1. и 8.2. Рассмотрим более подробно возможности и особенности применения различных математических методов, перечисленных в этих таблицах, для построения моделей деятельности оператора.

 




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 515; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.