Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свободные затухающие и вынужденные механические колебания




Во всякой реальной системе, совершающей механические колебания, всегда действуют те или иные силы сопротивления (трение в точке подвеса, сопротивление окружающей среды и т.п.), на преодоление которых система затрачивает энергию, вследствие чего реальные свободные механические колебания всегда являются затухающими.

Затухающие колебания - это колебания, амплитуда которых убывает со временем.

Найдем закон изменения амплитуды.

Для пружинного маятника массой m, совершающего малые колебания под действием упругой силы сила трения пропорциональна скорости:

где r - коэффициент сопротивления среды; знак минус означает, что всегда направлена противоположно скорости.

Согласно II закону Ньютона уравнение движения маятника имеет вид:

Обозначим:

дифференциальное уравнение свободных затухающих колебаний.

Решением этого уравнения является выражение:

,

где циклическая частота свободных затухающих колебаний,

w0 - циклическая частота свободных незатухающих колебаний,

b - коэффициент затухания,

A0 - амплитуда в начальный момент времени (t=0).

- закон убывания амплитуды.

С течением времени амплитуда убывает по экспоненциальному закону (рис. 3).

Время релаксации - это время, за которое амплитуда уменьшается в раз.

.

Таким образом, есть величина, обратная времени релаксации.

Важнейшей характеристикой затухающих колебаний является логарифмический декремент затухания .

Логарифмическим декрементом затухания называется натуральный логарифм отношения двух амплитуд, отличающихся друг от друга по времени на период:

.

Выясним его физический смысл.

 
 

За время релаксации система успеет совершить N колебаний:

,

т.е. - это величина, обратная числу колебаний, в течение которых амплитуда уменьшается в е раз.

Для характеристики колебательной системы используют понятие добротности:

.

Добротность - физическая величина, пропорциональная числу колебаний, в течение которых амплитуда уменьшается в е раз (рис. 4, ).

Вынужденными называются колебания, которые совершаются в системе под действием периодически изменяющейся внешней силы.

Пусть внешняя сила изменяется по гармоническому закону:

.

Кроме внешней силы на колеблющуюся систему действуют возвращающая сила и сила сопротивления, пропорциональная скорости колебаний:

Вынужденные колебания совершаются с частотой, равной частоте вынуждающей силы. Экспериментально установлено, что смещение отстает в своем изменении от вынуждающей силы. Можно доказать, что

где - амплитуда вынужденных колебаний,

- разность фаз колебаний и ,

; .

Графически вынужденные колебания представлены на рис.5.

Если вынуждающая сила изменяется по гармоническому закону, то и сами колебания будут гармоническими. Их частота равна частоте вынуждающей силы, а амплитуда пропорциональна амплитуде вынуждающей силы.

Зависимость амплитуды от частоты вынуждающей силы приводит к тому, что при некоторой, определенной для данной системы частоте, амплитуда достигает максимума.

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте системы (к резонансной частоте) называется резонансом (рис.6).

 

 




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 1099; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.