КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Распараллеливание расчетов
Методы повышения производительности традиционных ЭВМ В Кембридже в 1949 году компьютер EDSAC мог выполнить 100 арифметических операций в секунду. Время такта составляло 2 микросекунды. У одного из узлов современной суперЭВМ Hewlett-Packard V2600 время одного такта составляет 1,8 наносекунды. При этом пиковая производительность примерно 77 миллиардов арифметических операций. Получается, что при выигрыше в быстродействии в 1000 раз, увеличение производительности составило 700 000 000 раз. За счет чего? Ответ прост – за счет использования новых архитектур. Основной является параллельная обработка данных. Но все не так просто. А какой тип процессоров выбрать, какую память надо взять? И это далеко не полный список вопросов. Чтобы разобраться во всем многообразии возможных решений рассмотрим возможные методы такого ускорения. Самое простое предположение, что Р процессоров выполнят задачу в Р раз быстрее, чем один, срабатывает только в идеальном случае. Обычно, дела обстоят не так уж хорошо, что иллюстрирует закон Амдала: , (2.1) где S – ускорение работы программы на P процессорах; f – доля непараллельного кода в программе. Эту формулу можно применять как для моделей с общей памятью, так и для модели передачи сообщений. Но для разных моделей понятие величина f представляет разные показатели. Для модели общей памяти эту долю образуют операторы, которые выполняются только в главной нити программы. В модели передачи сообщений непараллельная часть – это часть операторов, которые дублируются всеми процессорами. Напрямую, просто взглянув на код программы, оценить величину f практически невозможно. Это позволяет сделать только просчет на различном числе процессоров. Для наглядности можно привести следующую таблицу: Таблица 2.1. Ускорение работы программы в зависимости от
Как видно из таблицы, если доля последовательного кода составляет 2%, то более чем в 50 раз ускорить процесс нельзя. Но, чтобы получить такое ускорение, запускать программу на 1024 (и более) процессорах ни к чему. Приемлемым может оказаться выполнение задачи и на 32 процессорах. Закон Амдала всего лишь устанавливает максимальное число процессоров, на которых будет выполняться программа с заданной эффективностью, при указанной доле непараллельного кода. Причем, в этой формуле не учитываются потери производительности при обмене информацией между процессорами. Поэтому, в реальности ситуация будет еще хуже. Не стоит думать, что распараллеливание – единственный метод увеличения скорости работы программы. Достаточно всего лишь оптимизировать код, и даже на однопроцессорной ЭВМ можно добиться существенного ускорения.
Дата добавления: 2014-12-07; Просмотров: 611; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |