КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Регенераторы цифровых сигналов
Глоссарий
Используемая литература 8.1. Основная: 1. Ю.В. Скалин «Цифровые системы передачи» М, Радио и связь, 1988г. Л1 стр. 95-105
Принцип регенерации цифрового двоичного сигнала. Построение регенераторов. Параметры регенераторов. Краткое содержание Регенерация формы цифрового сигнала. Проходя через среду распространения, цифровой сигнал ослабляется и подвергается искажению и воздействию помех, что приводит к изменению формы и длительности импульсов, изменению случайным образом времен ных интервалов между импульсами, уменьшению амплитуды импульсов. Задача регенератора восстановить амплитуду, форму, длительность каждого импульса цифрового сигнала, а также величину временных интервалов между соседними символами. В кабельных ЦСП линейный сигнал чаще всего передается в виде комбинаций импульсов поостоянного тока и пробелов, что упрощает реализацию регенераторов. В то же время регенераторы кабельных систем являются наиболее распространенным элементом современных цифровых сетей. Исходя из сказанного выше рассмотрим регенерацию цифрового сигнала, представляющего собой комбинацию импульсов и пробелов (единиц и нулей). Рисунок 1Принцип регенерации цифрового двоичного сигнала
Структура регенератора представлена на рис. 1 а. Искаженный цифровой сигнал из кабельной цепи поступает на усилитель-корректор УК, обеспечивающий частичную или полную коррекцию формы импульсов, и регистрируется решающим устройством РУ. Решающее устройство представляет собой пороговую схему, которая срабатывает, если уровень сигнала на его входе превышает пороговый уровень РУ, и не срабатывает, если уровень входного сигнала меньше уровня порога. Пороговое напряжение может подаваться извне или вырабатываться в схеме РУ. При поступлении импульса на выходе РУ появляется управляющий сигнал, а в случае 0 (пробела) состояние РУ не изменяется. Формирующее устройство ФУ обеспечивает формирование по сигналам РУ импульсов с принятыми для конкретной системы стандартными параметрами^ Верность принимаемых РУ решений зависит, в первую очередь, от способа обнаружения двоичного сигнала и качества работы УТС. При безошибочной работе РУ каждому входному импульсу соответствует выходной, а каждому «пробелу» на входе - - «пробел» на выходе. Однако из-за присутствия на входе РУ различных помех, несовершенства устройства тактовой синхронизации и других причин в процессе регенерации возможны ошибки, выражающиеся в преобразовании 1 на входе регенератора в 0 на выходе и наоборот входного 0 в выходную 1. Рассмотрим временные диаграммы, поясняющие принцип регенерации цифрового сигнала (рис. 4.8). Входной сигнал, пройдя регенерационный участок (рис. 1.б), искажается, форма его изменяется и на входе УК (рис. 1, в) она уже сильно отличается от исходной. Усилитель-корректор, устраняя амплитудно-частотные искажения цепи, корректирует форму импульсов, обеспечивая более крутые фронты, что облегчает процесс принятия решения в РУ. Форма сигнала на входе РУ представлена на рис. 1, г, здесь же штриховой линией, показан пороговый уровень РУ. На рис. 1, д показаны сигналы тактовой синхронизации. Из рисунка видно, что сигналы УТС размещаются в центрах тактовых интервалов, на которых входные сигналы РУ имеют максимальное значение и наименее искаженную форму, т. е. обеспечивается максимальное превышение сигнала над помехой, а следовательно, и верность регистрации. Из рисунка также ясно, что смещение синхросигнала может привести к ошибке регенерации. Не исключается ошибочное решение и при правильном расположении тактовых синхроимпульсов. Такой случай возможен, если полярность помехи противоположна полярности импульса, а ее абсолютная величина больше порогового значения. Тогда уровень импульса, искаженного помехой, будет ниже порогового уровня, что при регенерации приведет к ошибке. Если при отсутствии импульса уровень помехи окажется выше порогового, это также приведет к ошибке.
Дата добавления: 2014-12-07; Просмотров: 2717; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |